2024届四川省成都市经开区实验中学高二数学第二学期期末联考模拟试题含解析_第1页
2024届四川省成都市经开区实验中学高二数学第二学期期末联考模拟试题含解析_第2页
2024届四川省成都市经开区实验中学高二数学第二学期期末联考模拟试题含解析_第3页
2024届四川省成都市经开区实验中学高二数学第二学期期末联考模拟试题含解析_第4页
2024届四川省成都市经开区实验中学高二数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都市经开区实验中学高二数学第二学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.根据中央对“精准扶贫”的要求,某市决定派7名党员去甲、乙、丙三个村进行调研,其中有4名男性党员,3名女性党员现从中选3人去甲村若要求这3人中既有男性,又有女性,则不同的选法共有()A.35种 B.30种 C.28种 D.25种2.干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年3.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件.其长度误差落在区间内的概率为()(附:若随机变量服从正态分布N,则,)A. B. C. D.4.在等差数列{an}中,,角α顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点(a2,a1+a3),则cos2α=()A. B. C. D.5.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到的观测值,根据临界值表,以下说法正确的是()P(K2≥k0)0.500.400.250.150.100.050.050.0100.005k00.4550.7081.3232.0722.7063.8415.0246.6357.879A.在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B.在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C.在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D.在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关6.若函数且)在R上既是奇函数,又是减函数,则的图象是()A. B.C. D.7.已知命题,则为A. B.C. D.8.把圆x2+(y-2)A.线段 B.等边三角形C.直角三角形 D.四边形9.设三次函数的导函数为,函数的图象的一部分如图所示,则正确的是()A.的极大值为,极小值为B.的极大值为,极小值为C.的极大值为,极小值为D.的极大值为,极小值为10.已知定义在R上的奇函数,满足,且在上是减函数,则()A. B.C. D.11.已知定义域为正整数集的函数满足,则数列的前项和为()A. B. C. D.12.从某大学中随机选取8名女大学生,其身高(单位:)与体重(单位:)数据如下表:1651651571701751651551704857505464614359若已知与的线性回归方程为,那么选取的女大学生身高为时,相应的残差为()A. B.0.96 C.63.04 D.二、填空题:本题共4小题,每小题5分,共20分。13.中,角的对边分別是,已知,则_______.14.如图①,矩形的边,直角三角形的边,,沿把三角形折起,构成四棱锥,使得在平面内的射影落在线段上,如图②,则这个四棱锥的体积的最大值为__________.15.已知双曲线上的动点到点和的距离分别为和,,且,则双曲线的方程为_______.16.向量的夹角为,且则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某海湿地如图所示,A、B和C、D分别是以点O为中心在东西方向和南北方向设置的四个观测点,它们到点O的距离均为公里,实线PQST是一条观光长廊,其中,PQ段上的任意一点到观测点C的距离比到观测点D的距离都多8公里,QS段上的任意一点到中心点O的距离都相等,ST段上的任意一点到观测点A的距离比到观测点B的距离都多8公里,以O为原点,AB所在直线为x轴建立平面直角坐标系xOy.(1)求观光长廊PQST所在的曲线的方程;(2)在观光长廊的PQ段上,需建一服务站M,使其到观测点A的距离最近,问如何设置服务站M的位置?18.(12分)某中学开设了足球、篮球、乒乓球、排球四门体育课程供学生选学,每个学生必须且只能选学其中门课程.假设每个学生选学每门课程的概率均为,对于该校的甲、乙、丙名学生,回答下面的问题.(1)求这名学生选学课程互不相同的概率;(2)设名学生中选学乒乓球的人数为,求的分布列及数学期望.19.(12分)已知动圆经过点,并且与圆相切.(1)求点的轨迹的方程;(2)设为轨迹内的一个动点,过点且斜率为的直线交轨迹于、两点,当为何值时?是与无关的定值,并求出该值定值.20.(12分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为160人、120人、人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人到前排就坐,其中高二代表队有6人.(1)求的值;(2)把到前排就坐的高二代表队6人分别记为,,,,,,现随机从中抽取2人上台抽奖.求或没有上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数,,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.21.(12分)在中,角的对边分别是,已知,,且.(1)求的面积;(2)若角为钝角,点为中点,求线段的长度.22.(10分)(1)已知,是虚数单位,若,是纯虚数,写出一个以为其中一根的实系数一元二次方程;(2)求纯虛数的平方根.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

首先算出名党员选名去甲村的全部情况,再计算出全是男性党员和全是女性党员的情况,即可得到既有男性,又有女性的情况.【题目详解】从名党员选名去甲村共有种情况,名全是男性党员共有种情况,名全是女性党员共有种情况,名既有男性,又有女性共有种情况.故选:B【题目点拨】本题主要考查组合的应用,属于简单题.2、C【解题分析】

天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果.【题目详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C.【题目点拨】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解题分析】

利用原则,分别求出的值,再利用对称性求出.【题目详解】正态分布中,,所以,,所以,故选B.【题目点拨】本题考查正态分布知识,考查利用正态分布曲线的对称性求随机变量在给定区间的概率.4、A【解题分析】

利用等差数列的知识可求的值,然后利用的公式可求.【题目详解】由等差数列{an}的性质可知,所以,所以.故选:A.【题目点拨】本题主要考查等差数列的性质和三角函数求值,注意齐次式的转化,侧重考查数学运算的核心素养.5、D【解题分析】分析:根据临界值表,确定犯错误的概率详解:因为根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关.选D.点睛:本题考查卡方含义,考查基本求解能力.6、A【解题分析】

由题意首先确定函数g(x)的解析式,然后结合函数的解析式即可确定函数的图像.【题目详解】∵函数(a>0,a≠1)在R上是奇函数,∴f(0)=0,∴k=2,经检验k=2满足题意,又函数为减函数,所以,所以g(x)=loga(x+2)定义域为x>−2,且单调递减,故选A.【题目点拨】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.7、C【解题分析】分析:把全称改为特称,大于改为小于等于。详解:,故选C点睛:带全称、特称量词的否定,命题“,则成立”的否定:,则成立命题“,则成立”的否定:,则成立8、B【解题分析】

通过联立方程直接求得交点坐标,从而判断图形形状.【题目详解】联立x2+(y-2)2=1与x2【题目点拨】本题主要考查圆与椭圆的交点问题,难度不大.9、C【解题分析】

由的图象可以得出在各区间的正负,然后可得在各区间的单调性,进而可得极值.【题目详解】由图象可知:当和时,,则;当时,,则;当时,,则;当时,,则;当时,,则.所以在上单调递减;在上单调递增;在上单调递减.所以的极小值为,极大值为.故选C.【题目点拨】本题考查导数与函数单调性的关系,解题的突破点是由已知函数的图象得出的正负性.10、D【解题分析】

根据条件,可得函数周期为4,利用函数期性和单调性之间的关系,依次对选项进行判断,由此得到答案。【题目详解】因为,所以,,可得的周期为4,所以,,.又因为是奇函数且在上是减函数,所以在上是减函数,所以,即,故选D.【题目点拨】本题主要考查函数值的大小比较,根据条件求出函数的周期性,结合函数单调性和奇偶性之间的关系是解决本题的关键。11、A【解题分析】分析:通过求出,再利用等差数列的求和公式即可求得答案.详解:当时,有;当时,有;当时,有;…...,.故答案为:A.点睛:本题主要考查了数列求和以及通项公式的求法,考查计算能力与分析能力,属于中档题.12、B【解题分析】

将175代入线性回归方程计算理论值,实际数值减去理论数值得到答案.【题目详解】已知与的线性回归方程为当时:相应的残差为:故答案选B【题目点拨】本题考查了残差的计算,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

化简已知等式可得sinC=1,又a=b,由余弦定理可得:cosC=sinC,利用两角差的正弦函数公式可求sin(C)=0,结合范围C∈(,),可求C的值.【题目详解】∵c2=2b2(1﹣sinC),∴可得:sinC=1,又∵a=b,由余弦定理可得:cosC1sinC,∴sinC﹣cosC=0,可得:sin(C)=0,∵C∈(0,π),可得:C∈(,),∴C0,可得:C.故答案为【题目点拨】本题主要考查了余弦定理,两角差的正弦函数公式,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想的应用,属于基础题.14、【解题分析】

设,可得,.,由余弦定理以及同角三角函数的关系得,则,利用配方法可得结果.【题目详解】因为在矩形内的射影落在线段上,所以平面垂直于平面,因为,所以平面,,同理,设,则,.在中,,,所以,所以四棱锥的体积.因为,所以当,即时,体积取得最大值,最大值为,故答案为.【题目点拨】本题主要考查面面垂直的性质,余弦定理的应用以及锥体的体积公式,考查了配方法求最值,属于难题.解决立体几何中的最值问题一般有两种方法:一是几何意义,特别是用空间点线面关系和平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.15、【解题分析】

在△中,利用余弦定理和双曲线的定义得到,从而求得,,最后求出双曲线的方程即可.【题目详解】在△中,由余弦定理得:,,,则双曲线方程为.故答案为:.【题目点拨】本小题考查双曲线的定义、余弦定理、三角恒等变换等知识的交会,考查函数与方程思想,考查运算求解能力,属于中档题.16、6【解题分析】

由题意,利用向量的数量积的运算,可得,即可求解.【题目详解】由题意,可知向量的夹角为,且则.【题目点拨】本题主要考查了平面向量的数量积的运算,其中解答中熟记平面向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)由题意知,QS的轨迹为圆的一部分,PQ的轨迹为双曲线的一部分,ST的轨迹为双曲线的一部分,分别求出对应的轨迹方程即可;(2)由题意设点M(x,y),计算|MA|2的解析式,再求|MA|的最小值与对应的x、y的值.【题目详解】解:(1)①由题意知,QS段上的任意一点到中心点O的距离都相等,QS的轨迹为圆的一部分,其中r=4,圆心坐标为O,即x≥0、y≥0时,圆的方程为x2+y2=16;②PQ段上的任意一点到观测点C的距离比到观测点D的距离都多8公里,PQ的轨迹为双曲线的一部分,且c=4,a=4,即x<0、y>0时,双曲线方程为1;③ST段上的任意一点到观测点A的距离比到观测点B的距离都多8公里,ST的轨迹为双曲线的一部分,且c=4,a=4,即x>0、y<0时,双曲线方程为1;综上,x≥0、y≥0时,曲线方程为x2+y2=16;x<0、y>0时,曲线方程为1;x>0、y<0时,曲线方程为1;[注]可合并为1;(2)由题意设点M(x,y),其中1,其中x≤0,y≥0;则|MA|2y2x2+16=232;当且仅当x=﹣2时,|MA|取得最小值为4;此时y=42;∴点M(﹣2,2).【题目点拨】本题考查了圆、双曲线的定义与标准方程的应用问题,解题的关键是利用定义求出双曲线和圆的标准方程.18、(1);(2)分布列见解析,期望为.【解题分析】分析:(1)每个学生必须且只能选学其中门课程,每一个人都有4种选择,共有,名学生选学课程互不相同,则有种,从而求解;(2)的所有可能取值为,,,,分别算出对应的概率,再利用期望公式求解.详解:(1)名学生选学的课程互不相同的概率.(2)的所有可能取值为,,,,,,,,∴的分布列为:.点睛:求随机变量及其分布列的一般步骤(1)明确随机变量的所有可能取值,以及取每个值所表示的意义.(2)利用排列、组合知识或互斥事件、独立事件的概率公式求出随机变量取每个可能值的概率;(3)按规范形式写出随机变量的分布列,并用分布列的性质验证.19、(1)(2).【解题分析】

(1)由题意可得点的轨迹是以、为焦点的椭圆,求出半长轴及半焦距的长度,再由隐含条件求得,则椭圆方程可求;(2)设,,,直线,联立直线方程与椭圆方程,利用根与系数的关系求得、的横坐标与纵坐标的和与积,再由是与无关的定值求得,进一步得到该定值.【题目详解】(1)由题设得:|,点的轨迹是以、为焦点的椭圆,,,,椭圆方程为;(2)设,,,直线,由,得,由韦达定理得,,,,,的值与无关,,解得.此时.【题目点拨】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,体现了“设而不求”的解题思想方法与待定系数法,是中档题.20、(1)160;(2);(3)【解题分析】本题考查概率与统计知识,考查分层抽样,考查概率的计算,确定概率的类型是关键.(1)根据分层抽样可得故可求n的值;(2)求出高二代表队6人,从中抽取2人上台抽奖的基本事件,确定a和b至少有一人上台抽奖的基本事件,根据古典

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论