江苏省泰州市2024届高二数学第二学期期末质量跟踪监视试题含解析_第1页
江苏省泰州市2024届高二数学第二学期期末质量跟踪监视试题含解析_第2页
江苏省泰州市2024届高二数学第二学期期末质量跟踪监视试题含解析_第3页
江苏省泰州市2024届高二数学第二学期期末质量跟踪监视试题含解析_第4页
江苏省泰州市2024届高二数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省泰州市2024届高二数学第二学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是()A. B.C. D.2.正项等比数列中,存在两项使得,且,则的最小值是()A. B.2 C. D.3.已知函数图象经过点,则该函数图象的一条对称轴方程为()A. B. C. D.4.杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年发现这一规律的.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,这是我国数学史上的一个伟大成就.如图所示,在“杨辉三角”中,去除所有为1的项,依次构成数列,则此数列前135项的和为()A. B. C. D.5.下列说法正确的是()A.命题“若,则”的否命题为:“若,则”B.已知是R上的可导函数,则“”是“x0是函数的极值点”的必要不充分条件C.命题“存在,使得”的否定是:“对任意,均有”D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题6.已知直线的倾斜角为,直线与双曲线的左、右两支分别交于两点,且都垂直于轴(其中分别为双曲线的左、右焦点),则该双曲线的离心率为A. B. C. D.7.如表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程=0.7x+0.35,那么表中m的值为()A.4 B.3.15 C.4.5 D.38.已知函数(为自然对数的底数),.若存在实数,使得,且,则实数的最大值为()A. B. C. D.19.已知为虚数单位,复数,则()A. B. C. D.10.在极坐标系中,已知圆经过点,圆心为直线与极轴的交点,则圆的极坐标方程为A. B. C. D.11.变量与的回归模型中,它们对应的相关系数的值如下,其中拟合效果最好的模型是()模型12340.480.150.960.30A.模型1 B.模型2 C.模型3 D.模型412.若a∈R,则“a=2”是“|a|=2”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知点在圆上,点在椭圆上,,则的最小值为__________.14.已知,函数,若在区间上单调递减,则的取值范围是____.15.一只蚂蚁位于数轴处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为,向左移动的概率为,则3秒后,这只蚂蚁在x=1处的概率为________.16.函数的定义域是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处取得极小值1.(1)求的解析式;(2)求在上的最值.18.(12分)已知在平面直角坐标系中,直线的参数方程是(t是参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)判断直线与曲线C的位置关系;(2)设点为曲线C上任意一点,求的取值范围.19.(12分)已知命题关于的方程的解集至多有两个子集,命题,,若是的必要不充分条件,求实数的取值范围.20.(12分)(1)用分析法证明:;(2)用数学归纳法证明:.21.(12分)2018年6月19日凌晨某公司公布的年中促销全天交易数据显示,天猫年中促销当天全天下单金额为1592亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了6月18日100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.网购金额(元)频数频率50.05150.15250.25300.3合计1001(Ⅰ)先求出的值,再将图中所示的频率分布直方图绘制完整;(Ⅱ)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?网龄3年以上网龄不足3年总计购物金额在2000元以上35购物金额在2000元以下20总计100参考数据:0.150.100.050.0250.0100.0050.0012.0722.0763.8415.0246.6357.87910.828参考公式:其中.(Ⅲ)从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在和两组所抽中的8人中再随机抽取2人各奖励1000元现金,求组获得现金奖的数学期望.22.(10分)设,,其中a,.Ⅰ求的极大值;Ⅱ设,,若对任意的,恒成立,求a的最大值;Ⅲ设,若对任意给定的,在区间上总存在s,,使成立,求b的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

构造函数,首先判断函数的奇偶性,利用可判断时函数的单调性,结合函数图象列不等式组可得结果.【题目详解】设,则的导数为,因为时,,即成立,所以当时,恒大于零,当时,函数为增函数,又,函数为定义域上的偶函数,当时,函数为减函数,又函数的图象性质类似如图,数形结合可得,不等式,或,可得或,使得成立的的取值范围是故选:A.【题目点拨】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.2、A【解题分析】试题分析:由得解得,再由得,所以,所以.考点:数列与基本不等式.【思路点晴】本题主要考查等比数列的基本元思想,考查基本不等式.第一步是解决等比数列的首项和公比,也即求出等比数列的基本元,在求解过程中,先对具体的数值条件进行化简,可求出,由此化简第一个条件,可得到;接下来第二步是基本不等式常用的处理技巧,先乘以一个常数,再除以这个常数,构造基本不等式结构来求.3、C【解题分析】

首先把点带入求出,再根据正弦函数的对称轴即可.【题目详解】把点带入得,因为,所以,所以,函数的对称轴为.当,所以选择C【题目点拨】本题主要考查了三角函数的性质,需要记忆常考三角函数的性质有:单调性、周期性、对称轴、对称中心、奇偶性等.属于中等题.4、A【解题分析】

利用n次二项式系数对应杨辉三角形的第n+1行,然后令x=1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可.【题目详解】n次二项式系数对应杨辉三角形的第n+1行,例如(x+1)2=x2+2x+1,系数分别为1,2,1,对应杨辉三角形的第3行,令x=1,就可以求出该行的系数之和,第1行为20,第2行为21,第3行为22,以此类推即每一行数字和为首项为1,公比为2的等比数列,则杨辉三角形的前n项和为Sn2n﹣1,若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成一个首项为1,公差为1的等差数列,则Tn,可得当n=15,在加上第16行的前15项时,所有项的个数和为135,由于最右侧为2,3,4,5,……,为首项是2公差为1的等差数列,则第16行的第16项为17,则杨辉三角形的前18项的和为S18=218﹣1,则此数列前135项的和为S18﹣35﹣17=218﹣53,故选:A.【题目点拨】本题主要考查归纳推理的应用,结合杨辉三角形的系数与二项式系数的关系以及等比数列等差数列的求和公式是解决本题的关键,综合性较强,难度较大.5、B【解题分析】试题分析:对于A,命题“若,则”的否命题为:“若,则”,不满足否命题的定义,所以A不正确;对于B,已知是R上的可导函数,则“”函数不一定有极值,“是函数的极值点”一定有导函数为,所以已知是上的可导函数,则“”是“是函数的极值点”的必要不充分条件,正确;对于C,命题“存在,使得”的否定是:“对任意,均有”,不满足命题的否定形式,所以不正确;对于D,命题“角的终边在第一象限角,则是锐角”是错误命题,则逆否命题为假命题,所以D不正确;故选B.考点:命题的真假判断与应用.6、D【解题分析】

根据题意设点,,则,又由直线的倾斜角为,得,结合点在双曲线上,即可求出离心率.【题目详解】直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴,根据双曲线的对称性,设点,,则,即,且,又直线的倾斜角为,直线过坐标原点,,,整理得,即,解方程得,(舍)故选D.【题目点拨】本题考查双曲线的几何性质、直线与双曲线的位置关系及双曲线离心率的求法,考查化简整理的运算能力和转化思想,属于中档题.圆锥曲线离心率的计算,常采用两种方法:1、通过已知条件构建关于的齐次方程,解出.根据题设条件(主要用到:方程思想,余弦定理,平面几何相似,直角三角形性质等)借助之间的关系,得到关于的一元方程,从而解得离心率.2、通过已知条件确定圆锥曲线上某点坐标,代入方程中,解出.根据题设条件,借助表示曲线某点坐标,代入曲线方程转化成关于的一元方程,从而解得离心率.7、D【解题分析】

因为线性回归方程=0.7x+0.35,过样本点的中心,,故选D.8、C【解题分析】

解方程求得,结合求得的取值范围.将转化为直线和在区间上有交点的问题来求得的最大值.【题目详解】由得,注意到在上为增函数且,所以.由于的定义域为,所以由得.所以由得,画出和的图像如下图所示,其中由图可知的最大值即为.故选C.【题目点拨】本小题主要考查函数零点问题,考查指数方程和对数方程的解法,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题.9、C【解题分析】

对进行化简,得到标准形式,在根据复数模长的公式,得到【题目详解】对复数进行化简所以【题目点拨】考查复数的基本运算和求复数的模长,属于简单题.10、A【解题分析】

求出圆C的圆心坐标为(2,0),由圆C经过点得到圆C过极点,由此能求出圆C的极坐标方程.【题目详解】在中,令,得,所以圆的圆心坐标为(2,0).因为圆经过点,所以圆的半径,于是圆过极点,所以圆的极坐标方程为.故选A【题目点拨】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.11、C【解题分析】分析:根据相关系数的性质,最大,则其拟合效果最好,进行判断即可.详解:线性回归分析中,相关系数为r,越接近于1,相关程度越大;

越小,相关程度越小,

∵模型3的相关系数最大,∴模拟效果最好,

故选:A.点睛:本题主要考查线性回归系数的性质,在线性回归分析中,相关系数为r,越接近于1,相关程度越大;越小,相关程度越小.12、A【解题分析】

通过充分必要条件的定义判定即可.【题目详解】若a=2,显然|a|=2;若|a|=2,则a=±2,所以“a=2”是“|a|=2”的充分而不必要条件,故选A.【题目点拨】本题主要考查充分必要条件的相关判定,难度很小.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:根据题意,详解:根据题意,当三点共线时.点睛:本题考查椭圆的定义,看出最小值IDE求法,属难题.14、【解题分析】

根据已知可得,恒成立,根据二次函数的图像,列不等式组解决问题.【题目详解】,在区间上单调递减,,解得.故填:.【题目点拨】本题考查了已知函数在某区间的单调性求参数的取值范围,根据函数是单调递减,转化为恒成立,根据二次函数的图像列不等式组,得到参数的取值范围,一般恒成立的问题也可转化为参变分离的方法,转化为求函数的最值问题.15、【解题分析】

3秒后,这只蚂蚁在x=1处的概率即求蚂蚁三次移动中,向右移动两次,向左移动一次的概率,由次独立重复试验的概率计算即可。【题目详解】3秒后,这只蚂蚁在x=1处的概率即求蚂蚁三次移动中,向右移动两次,向左移动一次的概率,所以【题目点拨】本题主要考查独立重复试验概率的计算,属于基础题。16、【解题分析】

将函数的指数形式转化为根式形式,即可求得其定义域.【题目详解】函数即根据二次根式有意义条件可知定义域为故答案为:【题目点拨】本题考查了具体函数定义域的求法,将函数解析式进行适当变形,更方便求解,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)最小值为1,最大值为2.【解题分析】

(1)利用导数,结合在处取得极小值1,求得的值,由此求得解析式.(2)根据在区间上的单调性,结合函数的极值以及区间端点的函数值,求得在区间上的最值.【题目详解】(1),由,得或.当时,,则在上单调递增,在上单调递减,符合题意,由,得;当时,,则在上单调递增,在上单调递减,在处取得极大值,不符合题意.所以.(2)由(1)知在上单调递增,在上单调递减,因为,所以的最小值为1,最大值为2.【题目点拨】本小题主要考查利用导数研究函数的极值,考查利用导数研究函数的最值,属于基础题.18、(1)相离;(2).【解题分析】试题分析:本题考查参数方程与普通方程、极坐标方程与直角坐标方程的转化,圆的参数方程的应用以及直线和圆的位置关系的判断.(1)把直线、曲线方程化为直角坐标方程后根据圆心到直线的距离和半径的关系判断即可.(2)利用圆的参数方程,根据点到直线的距离公式和三角函数的知识求解.试题解析:(1)由,消去得直线的普通方程为:由,得.∴,即.化为标准方程得:.∴圆心坐标为,半径为1,∵圆心到直线的距离,∴直线与曲线相离.(2)由为曲线上任意一点,可设,则,∵,∴∴的取值范围是.19、【解题分析】

先求出命题为真命题时实数的取值范围,由是的必要不充分条件,得出命题中的集合是命题中的集合的真子集,于是得出不等式求解,可得出实数的取值范围。【题目详解】当命题是真命题时,则关于的方程的解集至多有两个子集,即关于的方程的解集至多只有一个实数解,,化简得,解得,或,且或,由于是的必要不充分条件,则,所以,,解得,因此,实数的取值范围是.【题目点拨】本题考查利用充分必要性求参数的取值范围,解这类问题一般利用充分必要性转化为集合的包含关系来处理,具体关系如下:(1),则“”是“”的充分不必要条件;(2),则“”是“”的必要不充分条件;(3),则“”是“”的充要条件;(4),则“”是“”的既不充分也不必要条件。20、(1)见解析;(2)见解析.【解题分析】

(1)利用分析法逐步平方得出成立,可证明出原不等式成立;(2)先验证时等式成立,然后假设当时等式成立,可得出,然后再等式两边同时加上,并在所得等式右边提公因式,化简后可得出所证等式在时成立,由归纳原理得知所证不等式成立.【题目详解】(1)要证明成立,只需证明成立,即证明成立,只需证明成立,即证明成立,因为显然成立,所以原不等式成立,即;(2)①当时,,等式左边,右边,等式成立;②设当时,等式成立,即,则当时,,即成立,综上所述,.【题目点拨】本题考查分析法与数学归纳法证明不等式以及等式问题,证明时要熟悉这两种方法证明的基本步骤与原理,考查逻辑推理能力,属于中等题.21、(Ⅰ)见解析;(Ⅱ)在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关.(Ⅲ)1.【解题分析】

(Ⅰ)由题意可知2000元以上(不含2000元)的频率为0.4,所以网购金额在(2500,3000]的频率为0.4−0.3=0.1,由此再结合频率分布直方图与频率分布表可分别求得的值。再由数据补全频率分布直方图。(Ⅱ)先补全2×2列联表,由表中数据求得K2。(Ⅲ)在(2000,2500]组获奖人数X为0,1,2,求得概率及期望。【题目详解】(Ⅰ)因为网购金额在2000元以上(不含2000元)的频率为0.4,所以网购金额在(2500,3000]的频率为0.4−0.3=0.1,即q=0.1,且y=100×0.1=10,从而x=15,p=0.15,相应的频率分布直方图如图2所示.(Ⅱ)相应的2×2列联表为:由公式K2=,因为5.56>5.024,所以据此列联表判断,在犯错误的概率不超

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论