2024届安徽省安庆二中碧桂园分校数学高二下期末教学质量检测试题含解析_第1页
2024届安徽省安庆二中碧桂园分校数学高二下期末教学质量检测试题含解析_第2页
2024届安徽省安庆二中碧桂园分校数学高二下期末教学质量检测试题含解析_第3页
2024届安徽省安庆二中碧桂园分校数学高二下期末教学质量检测试题含解析_第4页
2024届安徽省安庆二中碧桂园分校数学高二下期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省安庆二中碧桂园分校数学高二下期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设a=e1eA.a>c>b B.c>a>b C.c>b>a D.a>b>c2.等于()A. B.2 C.-2 D.+23.设、、,,,,则、、三数()A.都小于 B.至少有一个不大于C.都大于 D.至少有一个不小于4.请观察这些数的排列规律,数字1位置在第一行第一列表示为(1,1),数字14位置在第四行第三列表示为(4,3),根据特点推算出数字2019的位置A.(45,44) B.(45,43)C.(45,42) D.该数不会出现5.曲线的参数方程是(是参数,),它的普通方程是(

)A. B.C. D.6.某校1000名学生的某次数学考试成绩X服从正态分布,其密度函数曲线如图所示,正态变量X在区间,,内取值的概率分别是,,,则成绩X位于区间(52,68]的人数大约是()A.997B.954C.683D.3417.如图,在直角梯形中,,是的中点,若在直角梯形中投掷一点,则以,,2为三边构成的三角形为钝角三角形的概率为()A. B. C. D.8.为第三象限角,,则()A. B. C. D.9.设,,则A. B.C. D.10.已知的展开式中的系数为5,则()A.4 B.3 C.2 D.-111.已知函数是定义在上的奇函数,若对于任意的实数,都有,且当时,,则的值为()A.-1 B.-2 C.2 D.112.已知,则中()A.至少有一个不小于1 B.至少有一个不大于1C.都不大于1 D.都不小于1二、填空题:本题共4小题,每小题5分,共20分。13.矩阵的逆矩阵为__________.14.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为___15.△的内角的对边分别为,已知,,则△的面积为________.16.甲、乙、丙射击命中目标的概率分别为、、,现在三人同时射击目标,且相互不影响,则目标被击中的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角,,的对边分别为,,,且,,.(Ⅰ)求及边的值;(Ⅱ)求的值.18.(12分)已知,.(1)如果函数的单调递减区间为,求函数的解析式;(2)在(1)的条件下,求函数的图象在点处的切线方程;(3)若不等式恒成立,求实数a的取值范围.19.(12分)如图,已知正三棱柱的高为3,底面边长为,点分别为棱和的中点.(1)求证:直线平面;(2)求二面角的余弦值.20.(12分)已知椭圆:与抛物线有公共的焦点,且公共弦长为,(1)求,的值.(2)过的直线交于,两点,交于,两点,且,求.21.(12分)某市实施二手房新政一年多以来,为了了解新政对居民的影响,房屋管理部门调查了2018年6月至2019年6月期间购买二手房情况,首先随机抽取了其中的400名购房者,并对其购房面积(单位:平方米,)讲行了一次统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年6月至2019年6月期间当月在售二手房的均价(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应2018年6月至2019年6月)(1)试估计该市市民的平均购房面积(同一组中的数据用该组区间的中点值为代表);(2)从该市2018年6月至2019年6月期间所有购买二手房的市民中任取3人,用频率估计概率,记这3人购房面积不低于100平方米的人数为,求的分布列与数学期望;(3)根据散点图选择和两个模型讲行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值,如表所示:0.0054590.0058860.006050请利用相关系数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年8月份的二手房购房均价(精确到0.001).参考数据:,,,,,参考公式:22.(10分)如图直线经过圆上的点,OA=OB,CA=CB,圆交直线于点、,其中在线段上,连接、.(1)证明:直线是圆的切线;(2)若,圆的半径为,求线段的长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

依据y=lnx的单调性即可得出【题目详解】∵b=ln而a=e1e>0,c=又lna=lne1所以lnc>lna,即有c>a,因此c>a>b【题目点拨】本题主要考查利用函数的单调性比较大小。2、D【解题分析】∵.故选D3、D【解题分析】

利用基本不等式计算出,于此可得出结论.【题目详解】由基本不等式得,当且仅当时,等号成立,因此,若、、三数都小于,则与矛盾,即、、三数至少有一个不小于,故选D.【题目点拨】本题考查了基本不等式的应用,考查反证法的基本概念,解题的关键就是利用基本不等式求最值,考查分析问题和解决问题的能力,属于中等题.4、C【解题分析】

由所给数的排列规律得到第行的最后一个数为,然后根据可推测2019所在的位置.【题目详解】由所给数表可得,每一行最后一个数为,由于,,所以故2019是第45行的倒数第4个数,所以数字2019的位置为(45,42).故选C.【题目点拨】(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识.(2)解决归纳推理问题的基本步骤①发现共性,通过观察特例发现某些相似性(特例的共性或一般规律);②归纳推理,把这种相似性推广为一个明确表述的一般命题(猜想).5、B【解题分析】

将曲线的参数方程利用代入法消去参数,即可得到它的普通方程.【题目详解】由,得,故,又,,故,因此所求的普通方程为,故选B.【题目点拨】本题考查参数方程和普通方程的转化,属于简单题.消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法.6、C【解题分析】分析:先由图得,再根据成绩X位于区间(52,68]的概率确定人数.详解:由图得因为,所以成绩X位于区间(52,68]的概率是,对应人数为选C.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.7、C【解题分析】

根据,,2为三边构成的三角形为钝角三角形建立不等式,其几何意义为以原点为圆心,半径为2的圆在第一象限的部分,用此部分去掉即为符合条件的的运动区域,作出面积比即可【题目详解】由题,,,故设为最长边长,以,,2为三边构成的三角形为钝角三角形,即以原点为圆心,半径为的圆,,故选【题目点拨】本题考查钝角三角形的三边关系,几何意义转化的能力及几何概型8、B【解题分析】分析:先由两角和的正切公式求出,再利用同角三角函数基本关系式进行求解.详解:由,得,由同角三角函数基本关系式,得,解得又因为为第三象限角,所以,则.点睛:1.利用两角和差公式、二倍角公式进行三角恒等变形时,要优先考虑用已知角表示所求角,如:、;2.利用同角三角函数基本关系式中的“”求解时,要注意利用角的范围或所在象限进行确定符号.9、B【解题分析】

分析:求出,得到的范围,进而可得结果.详解:.,即又即故选B.点睛:本题主要考查对数的运算和不等式,属于中档题.10、D【解题分析】

将化简为:分别计算的系数,相加为5解得.【题目详解】中的系数为:的系数为:的系数为:故答案选D【题目点拨】本题考查了二项式定理的计算,分成两种情况简化了计算.11、A【解题分析】

利用函数的奇偶性以及函数的周期性转化求解即可.【题目详解】因为f(x)是奇函数,且周期为2,所以f(﹣2017)+f(2018)=﹣f(2017)+f(2018)=﹣f(1)+f(0).当x∈[0,2)时,f(x)=log2(x+1),所以f(﹣2017)+f(2018)=﹣1+0=﹣1.故选:A.【题目点拨】本题考查函数的奇偶性以及函数的周期性的应用,考查计算能力.12、B【解题分析】

用反证法证明,假设同时大于,推出矛盾得出结果【题目详解】假设,,,三式相乘得,由,所以,同理,,则与矛盾,即假设不成立,所以不能同时大于,所以至少有一个不大于,故选【题目点拨】本题考查的是用反证法证明数学命题,把要证的结论进行否定,在此基础上推出矛盾,是解题的关键,同时还运用了基本不等式,本题较为综合二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

通过逆矩阵的定义构建方程组即可得到答案.【题目详解】由逆矩阵的定义知:,设,由题意可得:,即解得,因此.【题目点拨】本题主要考查逆矩阵的相关计算,难度不大.14、1【解题分析】

确定系统抽样间隔k=16,根据样本中含编号为28的产品,即可求解,得到答案.【题目详解】由系统抽样知,抽样间隔k=80因为样本中含编号为28的产品,则与之相邻的产品编号为12和44,故所取出的5个编号依次为12,28,44,60,1,即最大编号为1.【题目点拨】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的方法,确定好抽样的间隔是解答的关键,着重考查了运算与求解能力,属于基础题.15、.【解题分析】

首先利用正弦定理将题中的式子化为,化简求得,利用余弦定理,结合题中的条件,可以得到,可以断定为锐角,从而求得,进一步求得,利用三角形面积公式求得结果.【题目详解】因为,结合正弦定理可得,可得,因为,结合余弦定理,可得,所以为锐角,且,从而求得,所以的面积为,故答案是.【题目点拨】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住、、等特殊角的三角函数值,以便在解题中直接应用.16、【解题分析】分析:根据相互独立事件的概率乘法公式,目标被击中的概率等于1减去甲、乙、丙三人都没有击中目标的概率,运算求得结果.详解:目标被击中的概率等于1减去甲、乙、丙三人都没有击中目标的概率,故目标被击中的概率是.故答案为.点睛:本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),或;(2).【解题分析】分析:(1)根据正弦定理和二倍角公式,求得,在利用余弦定理求得边长的值;(2)由二倍角公式求得,再利用三角恒等变换求得的值.详解:(Ⅰ)中,,,∴,又,∴,,解得;又,,,解得或;(Ⅱ)∵,∴,∴;∴.点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.18、(1)(2)(3)【解题分析】

(1)求g(x)的导数,利用函数g(x)单调减区间为(,1),即是方程g'(x)=0的两个根.然后解a即可.(2)利用导数的几何意义求切线方程.(3)将不等式2f(x)≥g′(x)+2成立,转化为含参问题恒成立,然后利用导数求函数的最值即可.【题目详解】(1)由题意的解集是:即的两根分别是,1.将或代入方程得.∴.(2)由(1)知:,∴,∴点处的切线斜率,∴函数的图象在点处的切线方程为:,即.(3)∵,即:对上恒成立可得对上恒成立设,则令,得或(舍)当时,;当时,∴当时,取得最大值∴.的取值范围是.【题目点拨】本题主要考查利用导数研究函数的性质,要求熟练掌握导数和函数单调性,最值之间的关系,考查学生的运算能力.对含有参数恒成立问题,则需要转化为最值恒成立.19、(1)详见解析;(2).【解题分析】

取BC中点F,连接FE,FD,可证平面AFDE,则,求解三角形证明,再由线面垂直的判定可得直线平面BCE;

以F为坐标原点,建立如图所示空间直角坐标系,分别求出平面BED与平面BCD的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值.【题目详解】(1)取的中点,连结,如图,由题意知,四边形为矩形,且.因为为棱的中点,所以,因为,所以,因为,所以平面,所以.又,所以平面.(2)以F为坐标原点,建立如图所示空间直角坐标系,则0,,0,,,

,,

设平面BED的一个法向量为,

由,取,得.

取平面BCD的一个法向量为,

且二面角为锐角,

二面角的余弦值为.【题目点拨】本题考查线面垂直的判定,利用空间向量求解二面角的余弦值,考查空间想象能力与思维能力,属于中档题.20、(1),;(2).【解题分析】

(1)由椭圆以及抛物线的对称性可得到交点的纵坐标,代入,可得到交点的横坐标,再由有公共的焦点,即可得到,的值;(2)先设:,再由直线交于,两点,交于,两点,根据根与系数的关系可得横坐标之间的关系,再由已知条件可得,从而可求出.【题目详解】(1)∵,均关于轴对称,∴公共弦也关于轴对称,∵公共弦长为,将代入,中解得与,∴,.∵,有公共的焦点,∴,解得,.(2),设,,,,∵,∴,即,.当的斜率不存在时,显然不成立,∴设:,将方程代入整理得,,.将方程代入整理得,∴,.代入中解得,∵,∴.【题目点拨】本题考查了椭圆以及抛物线的对称性,以及直线与椭圆和抛物线的关系,抛物线定义求弦长,考查了学生的计算能力,属于较难题.21、(1);(2)1.2;(3)模型的拟合效果

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论