版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市秦淮区2024届数学高二下期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于两个平面和两条直线,下列命题中真命题是()A.若,则 B.若,则C.若,则 D.若,则2.已知定义在上的函数在上单调递增且,若为奇函数,则不等式的解集为()A. B. C. D.3.等差数列{an}的前n项和Sn,且4≤S2≤6,15≤S4≤21,则a2的取值范围为()A. B. C. D.4.复数z=i·(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.一个随机变量的分布列如图,其中为的一个内角,则的数学期望为()A. B. C. D.6.如图,在空间四边形ABCD中,设E,F分别是BC,CD的中点,则+(-)等于A.B.C.D.7.若复数满足,则=().A. B. C. D.8.设全集,,集合,则集合()A. B. C. D.9.等差数列{}中,,则前10项和()A.5 B.25 C.50 D.10010.点是双曲线在第一象限的某点,、为双曲线的焦点.若在以为直径的圆上且满足,则双曲线的离心率为()A.B.C.D.11.设满足约束条件,若,且的最大值为,则()A. B. C. D.12.设函数的定义域A,函数的值域为B,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若与垂直,则的值为______.14.某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有____种.15.不等式<恒成立,则a的取值范围是________.16.计算:_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有3名女生和5名男生,按照下列条件排队,求各有多少种不同的排队方法?(1)3名女生排在一起;(2)3名女生次序一定,但不一定相邻;(3)3名女生不站在排头和排尾,也互不相邻;(4)每两名女生之间至少有两名男生;(5)3名女生中,A,B要相邻,A,C不相邻.18.(12分)已知函数是定义在上的奇函数.(1)求a的值:(2)求函数的值域;(3)当时,恒成立,求实数m的取值范围.19.(12分)某中学学生会由8名同学组成,其中一年级有2人,二年级有3人,三年级有3人,现从这8人中任意选取2人参加一项活动.(1)求这2人来自两个不同年级的概率;(2)设表示选到三年级学生的人数,求的分布列和数学期望.20.(12分)已知函数.(1)求函数的单调区间;(2)当时,证明:对任意的,.21.(12分)前段时间,某机构调查人们对屯商平台“618”活动的认可度(分为:强烈和一般两类),随机抽取了100人统计得到2×2列联表的部分数据如表:一般强烈合计男45女10合计75100(1)补全2×2列联表中的数据;(2)判断能否有95%的把握认为人们的认可度是否为“强烈”与性别有关?参考公式及数据:0.050.0250.0100.0053.8415.0246.6357.87922.(10分)从4名男生和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数.(1)求的分布列(结果用数字表示);(2)求所选3个中最多有1名女生的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据线面平行垂直的位置关系判断.【题目详解】A中可能在内,A错;B中也可能在内,B错;与可能平行,C错;,则或,若,则由得,若,则内有直线,而易知,从而,D正确.故选D.【题目点拨】本题考查线面平行与垂直的关系,在说明一个命题是错误时可举一反例.说明命题是正确时必须证明.2、D【解题分析】
因为是奇函数,所以关于对称,根据条件结合数形结合可判断的解集.【题目详解】是奇函数,关于对称,在单调递增,在也是单调递增,,时,时,又关于对称,时,时的解集是.故选D.【题目点拨】本题考查了利用函数的性质和图像,解抽象不等式,这类问题的关键是数形结合,将函数的性质和图像结合一起,这样会比较简单.3、B【解题分析】
首先设公差为,由题中的条件可得和,利用待定系数法可得,结合所求的范围及不等式的性质可得.【题目详解】设公差为,由,得,即;同理由可得.故可设,所以有,所以有,解得,即,因为,.所以,即.故选:B.【题目点拨】本题主要考查不等式的性质及等差数列的运算,利用不等式求解范围时注意放缩的尺度,运算次数越少,范围越准确.4、B【解题分析】,故对应的点在第二象限.5、D【解题分析】
利用二倍角的余弦公式以及概率之和为1,可得,然后根据数学期望的计算公式可得结果.【题目详解】由,得,所以或(舍去)则,故选:D【题目点拨】本题考查给出分布列,数学期望的计算,掌握公式,细心计算,可得结果.6、C【解题分析】
由向量的线性运算的法则计算.【题目详解】-=,,∴+(-).故选C.【题目点拨】本题考查空间向量的线性运算,掌握线性运算的法则是解题基础.7、D【解题分析】
先解出复数,求得,然后计算其模长即可.【题目详解】解:因为,所以所以所以故选D.【题目点拨】本题考查了复数的综合运算,复数的模长,属于基础题.8、B【解题分析】由题得,,所以,,故选B.9、B【解题分析】试题分析:因为.考点:等差数列的前n项和公式,及等差数列的性质.点评:等差数列的性质之一:若,则.10、D【解题分析】试题分析:根据题画图,可知P为圆与双曲线的交点,根据双曲线定义可知:,所以,又,即,所以,,双曲线离心率,所以。考点:双曲线的综合应用。11、B【解题分析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解代入目标函数得答案.详解:由约束条件作出可行域如图:化目标函数为,由图可知,当直线过B时,直线在y轴上的截距最小,即z最大,联立,解得,,解得.故选:B.点睛:线性规划中的参数问题及其求解思路(1)线性规划中的参数问题,就是已知目标函数的最值或其他限制条件,求约束条件或目标函数中所含参数的值或取值范围的问题.(2)求解策略:解决这类问题时,首先要注意对参数取值的讨论,将各种情况下的可行域画出来,以确定是否符合题意,然后在符合题意的可行域里,寻求最优解,从而确定参数的值.12、B【解题分析】
根据二次根式的性质求出,再结合指数函数的性质求出,取交集即可.【题目详解】,,解得:,而单调递增,故值域:,,故选:.【题目点拨】本题考查定义域值域的求法,考查交集等基本知识,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】分析:根据题意,由向量坐标计算公式可得1﹣的坐标,由向量垂直与向量数量积的关系可得(1﹣)•=﹣3+x1=0,解可得x的值,进而由向量模的计算公式计算可得答案.详解:根据题意,向量=(1,x),=(﹣1,x),则1﹣=(3,x),若1﹣与垂直,则(1﹣)•=﹣3+x1=0,解可得:x=±,则||==1,故答案为1.点睛:本题考查向量数量积的坐标计算,关键是求出x的值.14、60【解题分析】试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.考点:排列组合.15、(-2,2)【解题分析】
利用指数函数的单调性可以得到一元二次不等式恒成立问题,再根据判别式即可求得结果.【题目详解】由指数函数的性质知y=x是减函数,因为<恒成立,所以x2+ax>2x+a-2恒成立,所以x2+(a-2)x-a+2>0恒成立,所以Δ=(a-2)2-4(-a+2)<0,即(a-2)(a-2+4)<0,即(a-2)(a+2)<0,故有-2<a<2,即a的取值范围是(-2,2).【题目点拨】本题考查不等式恒成立问题,利用指数函数的单调性将指数不等式转化为一元二次不等式是本题的关键,属基础题.16、【解题分析】
直接利用定积分公式计算即可。【题目详解】【题目点拨】本题主要考查了定积分计算,考查计算能力,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)4320(2)6720(3)2880(4)2880(5)5760【解题分析】
(1)根据题意,用捆绑法分2步分析:①,3名女生看成一个整体,②,将这个整体与5名男生全排列,由分步计数原理计算可得答案;(2)根据题意,先计算8人排成一排的排法,由倍分法分析可得答案;(3)根据题意,分2步分析:①,将5名男生全排列,②,将3名女生安排在5名男生形成的空位中,由分步计数原理计算可得答案;(4)根据题意,分2种情况讨论:①,两名女生之间有3名男生,另两名女生之间有2名男生,②,任意2名女生之间都有2名男生,分别求出每种情况下的排法数目,由加法原理计算可得答案;(5)根据题意,分2种情况讨论:①,A、B、C三人相邻,则B在中间,A、C在两边,②,A、B、C三人不全相邻,分别求出每种情况下的排法数目,由加法原理计算可得答案.【题目详解】(1)根据题意,分2步分析:①,3名女生看成一个整体,考虑其顺序有A3②,将这个整体与5名男生全排列,有A6则3名女生排在一起的排法有6×720=4320种;(2)根据题意,将8人排成一排,有A8由于3名女生次序一定,则有A8(3)根据题意,分2步分析:①,将5名男生全排列,有A5②,除去两端,有4个空位可选,在其中任选3个,安排3名女生,有A4则3名女生不站在排头和排尾,也互不相邻的排法有120×24=2880种;(4)根据题意,将3名女生排成一排,有A33=6①,两名女生之间有3名男生,另两名女生之间有2名男生,将5名男生分成3、2的两组,分别安排在3名女生之间,有6×C②,任意2名女生之间都有2名男生,将5名男生分成2、2、1的三组,2个2人组安排在三名女生之间,1人安排在两端,有6×C则每两名女生之间至少有两名男生的排法有1440+1440=2880种;(5)根据题意,分2种情况分析:①,A、B、C三人相邻,则B在中间,A、C在两边,三人有A2将3人看成一个整体,与5名男生全排列,有A6则此时有2×720=1440种排法;②,A、B、C三人不全相邻,先将5名男生全排列,有A5将A、B看成一个整体,和C一起安排在5名男生形成的6个空位中,有720×A则3名女生中,A,B要相邻,A,C不相邻的排法有1440+4320=5760种排法.【题目点拨】本题主要考查了排列、组合的应用,涉及分类、分步计数原理,属于中档题.18、(1)(2)(3)【解题分析】
(1)利用函数是奇函数的定义求解a即可(2)判断函数的单调性,求解函数的值域即可(3)利用函数恒成立,分离参数m,利用换元法,结合函数的单调性求解最大值,推出结果即可.【题目详解】(1)∵是R上的奇函数,∴即:.即整理可得.(2)在R上递增∵,,∴函数的值域为.(3)由可得,,.当时,令),则有,函数在1≤t≤3上为增函数,∴,,故实数m的取值范围为【题目点拨】本题主要考查了函数恒成立条件的应用,函数的单调性以及函数的奇偶性的应用,属于中档题.19、(1).(2)见解析.【解题分析】
(1)正难则反,先求这2人来自同一年级的概率,再用1减去这个概率,即为这2人来自两个不同年级的概率;(2)先求X的所有可能的取值,为0,1,2,再分别求时对应的概率P进而得到分布列,利用计算可得数学期望。【题目详解】(1)设事件表示“这2人来自同一年级”,这2人来自两个不同年级的概率为.(2)随机变量的可能取值为0,1,2,,,所以的分布列为012【题目点拨】本题考查古典概型的概率求解、离散型随机变量的分布列、数学期望的计算,属于基础题型。20、(1)单调递减区间为,单调递增区间为(2)证明见解析【解题分析】
(1)函数定义域为,求导得到,根据导数正负得到函数的单调区间.(2),不等式等价于恒成立,设,求函数的最小值得到,得到证明.【题目详解】(1),定义域为,,令;令.∴函数的单调递减区间为,单调递增区间为(2),即证恒成立令,即证恒成立,,∴,使成立,即则当时,,当时,∴在上单调递减,在上单调递增.∴又因,即∴又因,即得证.【题目点拨】本题考查了函数的单调区间,恒成立问题,将恒成立问题转化为函数的最值问题是解题的关键.21、(1)列联表见解析;(2)没有【解题分析】
(1)通过题意,分别求出认可度一般的男、女人数,认可度强烈的男、女人数,填写列联表;(2)根据列联表,计算出的值,然后进行判断,得到结论.【题目详解】(1)因为总人数人,认可度一般有人,所以认可度强烈有人,因为认可度强烈中,女有人,所以男有人,因为男共有人,所以认可度一般男有人,女有人,填写列联表如下;一般强烈合计男
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程事务部培训内容
- 湖南省岳阳市高三下学期三模政治试题2
- 章末真题集训07
- 三年级安全教育计划和教案
- 火电厂危化品供应协议
- 4S店翻新补充协议
- 助力农业高质量发展乡村振兴
- 第一章-热力学的基本规律
- 2024年海口客运从业资格证操作考试流程
- 2024年销售合同经典版
- ISO26262考试试题及答案
- 心肺复苏术后护理问题课件
- 经侦民警开展金融知识讲座
- 2023年中国电信春季校园招聘考前自测高频难、易考点模拟试题(共500题)含答案详解
- 工程设计资质专业人员专业对照表
- 工业自动化相关项目创业计划书
- 四年级科学教科版一天的食物3学习任务单
- 山东省济南市历下区2023-2024学年八年级上学期期中物理试卷
- 2023-2024学年河北省沧州市八年级上学期期中考试历史质量检测模拟试题(含解析)
- 国企“三重一大”决策事项清单
- 电气工程师生涯人物访谈报告
评论
0/150
提交评论