




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省大同市平城区第一中学数学高二下期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,若,则=()A.或 B.或 C.或 D.或或2.已知,若;,.那么p是q的()A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件3.在一次独立性检验中,其把握性超过99%但不超过99.5%,则的可能值为()参考数据:独立性检验临界值表0.1000.0500.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.5.424 B.6.765 C.7.897 D.11.8974.复数z满足,则复数z在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若复数所表示的点在第一象限,则实数m的取值范围是A. B. C. D.6.已知椭圆与双曲线有相同的焦点,点是曲线与的一个公共点,,分别是和的离心率,若,则的最小值为()A. B.4 C. D.97.在4次独立重复试验中,事件A发生的概率相同,若事件A至少发生1次的概率为,则事件A在一次试验中发生的概率为A. B. C. D.8.命题“,”的否定为()A. B.C., D.,9.已知函数.正实数满足,则下述结论中正确的一项是()A. B.C. D.10.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量().A.70 B.90 C.40 D.6011.已知空间不重合的三条直线、、及一个平面,下列命题中的假命题是().A.若,,则 B.若,,则C.若,,则 D.若,,则12.函数导数是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则函数的值域为__________14.过点的直线与圆相交于两点,当弦的长取最小值时,直线的倾倒角等于___________.15.某晚会安排5个摄影组到3个分会场负责直播,每个摄影组去一个分会场,每个分会场至少安排一个摄影组,则不同的安排方法共有______种(用数字作答).16.设,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在棱长为的正方体中,O是AC的中点,E是线段D1O上一点,且D1E=λEO.(1)若λ=1,求异面直线DE与CD1所成角的余弦值;(2)若平面CDE⊥平面CD1O,求λ的值.18.(12分)如图,在四棱锥中,底面为正方形,平面平面,点在线段上,平面,,.(1)求证:为的中点;(2)求直线与平面所成角的正弦值.19.(12分)是指悬浮在空气中的空气动力学当量直径小于或等于微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准,日均值在微克/立方米以下,空气质量为一级;在微克应立方米微克立方米之间,空气质量为二级:在微克/立方米以上,空气质量为超标.从某市年全年每天的监测数据中随机地抽取天的数据作为样本,监测值频数如下表:日均值(微克/立方米)频数(天)(1)从这天的日均值监测数据中,随机抽出天,求恰有天空气质量达到一级的概率;(2)从这天的数据中任取天数据,记表示抽到监测数据超标的天数,求的分布列.20.(12分)某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.21.(12分)一个盒子装有六张卡片,上面分别写着如下六个函数:,,,(I)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(II)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.22.(10分)在同一平面直角坐标系中,经过伸缩变换后,曲线变为曲线,过点且倾斜角为的直线与交于不同的两点.(1)求曲线的普通方程;(2)求的中点的轨迹的参数方程(以为参数).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】或.故选C.点睛:1、用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素元素的限制条件,明确集合的类型,是数集,是点集还是其它集合.2、求集合的交、交、补时,一般先化简,再由交、并、补的定义求解.3、在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn图;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2、C【解题分析】
转化,为,分析即得解【题目详解】若命题q为真,则,等价于因此p是q的充分不必要条件故选:C【题目点拨】本题考查了充分必要条件的判定,及存在性问题的转化,考查了学生逻辑推理,转化划归,数学运算的能力,属于基础题.3、B【解题分析】
根据独立性检验表解题【题目详解】把握性超过99%但不超过99.5%,,选B【题目点拨】本题考查独立性检验表,属于简单题.4、A【解题分析】
把已知等式变形,利用复数代数形式的乘除运算化简得答案.【题目详解】解:由,得.∴复数z在复平面内的对应点的坐标为,位于第一象限.故选A.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.5、C【解题分析】
利用复数代数形式的乘法运算化简复数,再由实部与虚部均大于0联立不等式组求解即可.【题目详解】表示的点在第一象限,,解得.实数的取值范围是.故选C.【题目点拨】本题主要考查的是复数的乘法、乘方运算,属于中档题.解题时一定要注意和以及运算的准确性,否则很容易出现错误.6、A【解题分析】
题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出a12+a22=2c2,由此能求出4e12+e22的最小值.【题目详解】由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2a2,①由椭圆定义|PF1|+|PF2|=2a1,②又∵PF1⊥PF2,∴|PF1|2+|PF2|2=4c2,③①2+②2,得|PF1|2+|PF2|2=4a12+4a22,④将④代入③,得a12+a22=2c2,∴4e12+e22==++≥+2=.故选A.【题目点拨】在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.7、A【解题分析】分析:可从事件的反面考虑,即事件A不发生的概率为,由此可易得结论.详解:设事件A在一次试验中发生的概率为,则,解得.故选A.点睛:在求“至少”、“至多”等事件的概率时,通常从事件的反而入手可能较简单,如本题中“至少发生1次”的反面为“一次都不发生”,若本题求“至多发生3次”的概率,其反面是“至少发生4次”即“全发生”.8、A【解题分析】分析:全称命题的否定是特称命题,直接写出结果即可.详解:∵全称命题的否定是特称命题,∴命题“∀x∈[﹣2,+∞),x+3≥1”的否定是∃x0∈[﹣2,+∞),x0+3<1,故选:A.点睛:本题考查命题的否定,全称命题与特称命题的关系,基本知识的考查,注意命题的否定与否命题的区别.命题的否定是既否结论,又否条件;否命题是只否结论.9、A【解题分析】由,即,从而,令,则由得,,可知在区间上单调递减,在区间上单调递增,,,可得或,又,因此成立,故选A.【方法点睛】本题主要考查利用导数求函数的最值,一元二次不等式的解法及数学的转化与划归思想.属于难题.转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.解答本题的关键是将方程问题转化为利用导数求最值进而通过解不等式解答.10、B【解题分析】
用除以甲的频率,由此求得样本容量.【题目详解】甲的频率为,故,故选B.【题目点拨】本小题主要考查分层抽样的知识,考查频率与样本容量的计算,属于基础题.11、B【解题分析】
根据线线、线面有关定理对选项逐一分析,由此确定是假命题的选项.【题目详解】对于A选项,根据平行公理可知,A选项正确.对于B选项,两条直线平行与同一个平面,这两条直线可以相交、平行或异面,故B选项是假命题.对于C选项,由于,,根据空间角的定义可知,,C选项正确.对于D选项,由于,所以平行于平面内一条直线,而,所以,所以,即D选项正确.故选:B.【题目点拨】本小题主要考查空间线线、线面有关命题真假性的判断,属于基础题.12、A【解题分析】
根据导数的基本公式和运算法则求导即可.【题目详解】,故选:A.【题目点拨】本题考查了导数的基本公式和运算法则,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
化为,时,,时,,从而可得结果.【题目详解】,当时,,当时,,函数,则函数的值域为,故答案为.【题目点拨】本题考查函数的值域,属于中档题.求函数值域的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法:常用代数或三角代换法,用换元法求值域时需认真分析换元参数的范围变化;③不等式法:借助于基本不等式求函数的值域,用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图象法:画出函数图象,根据图象的最高和最低点求最值.14、【解题分析】试题分析:圆心,当弦的长取最小值时,,.考点:直线与圆的位置关系.15、150【解题分析】
根据题意,先将5个摄影组可分为三队,分队的方式有2种:(1,1,3)和(1,2,2),再进行排列,由分类计数原理计算可得答案.【题目详解】根据题意,5个摄影组可分为三队,分队的方式有2种:(1,1,3)和(1,2,2),①按(1,1,3)进行分队有种,再分配到3个分会场,共有种;②按(1,2,2)进行分队有种,再分配到3个分会场,共有种;再进行相加,共计60+90=150种,故答案为:150.【题目点拨】本题考查排列、组合的实际应用问题,考查分类、分步计数原理的灵活应用,属于中等题.16、【解题分析】
因为,分别令和,即可求得答案.【题目详解】令.原式化为.令,得,.故答案为:.【题目点拨】本题主要考查了多项式展开式系数和,解题关键是掌握求多项式系数和的解题方法,考查了分析能力和计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)λ=2【解题分析】分析:以为单位正交基底建立如图所示的空间直角坐标系,写出各点的坐标,
(1)求出异面直线与1的方向向量用数量积公式两线夹角的余弦值(或补角的余弦值)
(2)求出两个平面的法向量,由于两个平面垂直,故它们的法向量的内积为0,由此方程求参数的值即可.详解:(1)以为单位正交基底建立如图所示的空间直角坐标系.则A(1,0,0),,,D1(0,0,1),E,于是,.由cos==.所以异面直线AE与CD1所成角的余弦值为.(2)设平面CD1O的向量为m=(x1,y1,z1),由m·=0,m·=0得取x1=1,得y1=z1=1,即m=(1,1,1).………8分由D1E=λEO,则E,=.10分又设平面CDE的法向量为n=(x2,y2,z2),由n·=0,n·=0.得取x2=2,得z2=-λ,即n=(-2,0,λ).12分因为平面CDE⊥平面CD1F,所以m·n=0,得.点睛:本题查了异面直线所成的角以及两个平面垂直的问题,本题采用向量法来研究线线,面面的问题,这是空间向量的一个重要运用,大大降低了求解立体几何问题的难度.18、(1)详见解析;(2).【解题分析】
(1)平面,得到,,为的中点.(2)以为坐标原点,分别以、、所在直线为、、轴距离空间直角坐标系,计算各个点坐标,平面的法向量为,利用向量夹角公式得到答案.【题目详解】解:⑴证明:如图,设,为正方形,为的中点,连接平面,平面,平面平面,则,即为的中点;(2)解:取中点,,,平面平面,且平面平面,平面,则,连接,则,由是的中点,是的中点,可得,则.以为坐标原点,分别以、、所在直线为、、轴距离空间直角坐标系由,,得,,,,,,,.设平面的一个法向量为,则由,得,取,得.,直线与平面所成角的正弦值为:.【题目点拨】本题考查了线面平行,线面夹角,意在考查学生的计算能力和空间想象能力.19、(1);(2)分布列见解析.【解题分析】
(1)由表格可知:这天的日均值监测数据中,只有天达到一级,然后利用组合计数原理与古典概型的概率公式可计算出所求事件的概率;(2)由题意可知,随机变量的可能取值有、、、,然后利用超几何分布即可得出随机变量的分布列.【题目详解】(1)由表格可知:这天的日均值监测数据中,只有天达到一级.随机抽取天,恰有天空气质量达到一级的概率为;(2)由题意可知,随机变量的可能取值有、、、,,,,.因此,随机变量的分布列如下表所示:【题目点拨】本题考查了概率的计算,同时也考查了超几何分布及其分布列等基础知识与基本技能,属于中档题.20、(1);(2)的分布列为
【解题分析】试题解析:(1)记“该考生在第一次抽到理科题”为事件,“该考生第二次和第三次均抽到文科题”为事件,则所以该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率为(2)的可能取值为0,10,20,30,则所以的分布列为0102030所以,的数学期望21、(1)(2)数学期望为.【解题分析】
(Ⅰ)所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数,先求出基本事件总数为,满足条件的基本事件为两张卡片上写的函数均为奇函数,再求出满足条件的基本事件个数为,由此能求出结果.(Ⅱ)ξ可取1,2,3,1.分别求出对应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三中去年考试试卷及答案
- 2025年租赁合同下的建房计划
- 浙江国企招聘2025金华智园至尚资产经营有限公司招聘17人笔试参考题库附带答案详解
- 2025综合商务合作合同
- 孤残儿童庇护服务社会资源动员策略考核试卷
- 聚丙烯酸甲酯静电纺丝考核试卷
- 电气设备在工业锅炉控制系统中的应用考核试卷
- 石油开采业的创新发展与价值创造考核试卷
- 管道工程自动化与智能化考核试卷
- 牛饲养常见疾病防治考核试卷
- 教育调查报告3000字小学
- 沟通的艺术沟通与自我课件
- 功能性敷料类别及特点
- 资产管理公司不良资产处置咨询服务协议
- 工程质量管理体系和质量管理制度
- 学生休学家长申请表
- 数独题目100题1(可打印)
- 2020年度高等学校科学研究优秀成果奖(科学技术)
- TD-T 1056-2019 县级国土调查生产成本定额
- XX医院安全风险清单及安全风险管控措施清单
- 中央第六巡视组反馈意见整改问题清单和责任清单
评论
0/150
提交评论