2024届江西省临川高二数学第二学期期末学业水平测试模拟试题含解析_第1页
2024届江西省临川高二数学第二学期期末学业水平测试模拟试题含解析_第2页
2024届江西省临川高二数学第二学期期末学业水平测试模拟试题含解析_第3页
2024届江西省临川高二数学第二学期期末学业水平测试模拟试题含解析_第4页
2024届江西省临川高二数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省临川高二数学第二学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在复平面内,复数的共轭复数对应的点位于A.第一象限 B.第二象限C.第三象限 D.第四象限2.已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.3.设a,b,c为三角形ABC三边长,a≠1,b<c,若logc+ba+logc-bA.锐角三角形B.直角三角形C.钝角三角形D.无法确定4.已知集合A={x|y=,x∈Z},B={y|y=sin(x+φ)},则A∩B中元素的个数为()A.3 B.4C.5 D.65.曲线的图像()A.关于轴对称B.关于原点对称,但不关于直线对称C.关于轴对称D.关于直线对称,关于直线对称6.同时具有性质“①最小正周期是”②图象关于对称;③在上是增函数的一个函数可以是()A. B.C. D.7.已如集合,,则()A. B. C. D.8.定积分的值为()A. B. C. D.9.已知复数(为虚数单位),则()A. B. C. D.10.已知函数的导函数的图象如图所示,那么()A.是函数的极小值点B.是函数的极大值点C.是函数的极大值点D.函数有两个极值点11.某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是()A. B.C. D.12.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取3个球,所取的3个球颜色不同的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知满足约束条件,则的最大值为__14.已知函数为偶函数,对任意满足,当时,.若函数至少有个零点,则实数的取值范围是____________.15.i为虚数单位,设复数z满足,则z的虚部是____16.若一个三位自然数的十位上的数字最大,则称该数为“凸数”(如,).由组成没有重复数字的三位数,其中凸数的个数为_____个.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在侧棱垂直于底面的三棱柱中,为侧面的对角线的交点,分别为棱的中点.(1)求证:平面//平面;(2)求二面角的余弦值.18.(12分)求证:.19.(12分)已知等差数列不是常数列,其前四项和为10,且、、成等比数列.(1)求通项公式;(2)设,求数列的前项和.20.(12分)已知曲线.(1)求曲线在点处的切线方程;(2)求与直线平行的曲线的切线方程.21.(12分)已知函数.(1)求曲线在点处的切线方程;(2)求过点且与曲线相切的直线方程.22.(10分)命题:函数的两个零点分别在区间和上;命题:函数有极值.若命题,为真命题的实数的取值集合分别记为,.(1)求集合,;(2)若命题“且”为假命题,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.2、A【解题分析】

根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果.【题目详解】由三视图可知,几何体为三棱锥三棱锥体积为:本题正确选项:【题目点拨】本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.3、B【解题分析】试题分析:两边除以logc+balogc-ba考点:1.解三角形;2.对数运算.4、C【解题分析】

利用定义域的的要求可以求出A集合,利用三角函数的性质求出B集合,再计算A与B的交集的元素个数即可.【题目详解】集合A满足-+x+6≥0,(x-3)(x+2)≤0,-2≤x≤3,∴A={-2,-1,0,1,2,3},B=[-,],所以A∩B={-2,-1,0,1,2},可知A∩B中元素个数为5.【题目点拨】本题考查集合间的交集关系的求解,本题难点在于无理数与有理数的比大小,属于简单题.5、D【解题分析】

构造二元函数,分别考虑与、、、、的关系,即可判断出相应的对称情况.【题目详解】A.,所以不关于轴对称;B.,,所以关于原点对称,也关于直线对称;C.,所以不关于轴对称;D.,所以关于直线对称,同时也关于直线对称.故选:D.【题目点拨】本题考查曲线与方程的综合应用,难度一般.若曲线关于轴对称,则将曲线中的换成,此时曲线的方程不变;若曲线关于轴对称,则将曲线中的换成,此时曲线的方程不变;若曲线关于对称,则将曲线中的换成、换成,此时曲线的方程不变;若曲线关于原点对称,则将曲线中的换成、换成,此时曲线的方程不变.6、B【解题分析】

利用所给条件逐条验证,最小正周期是得出,把②③分别代入选项验证可得.【题目详解】把代入A选项可得,符合;把代入B选项可得,符合;把代入C选项可得,不符合,排除C;把代入D选项可得,不符合,排除D;当时,,此时为减函数;当时,,此时为增函数;故选B.【题目点拨】本题主要考查三角函数的图象和性质,侧重考查直观想象的核心素养.7、A【解题分析】

求出集合A,B,然后进行交集的运算即可.【题目详解】由题意,集合,∴集合.故选:A.【题目点拨】本题主要考查了描述法、区间表示集合的定义,绝对值不等式的解法,以及交集的运算,着重考查了推理与运算能力,属于基础题.8、C【解题分析】

根据微积分基本定理,可知求解,即可.【题目详解】故选:C【题目点拨】本题考查微积分基本定理,属于较易题.9、D【解题分析】分析:化简复,利用复数模的公式求解即可.详解:因为,所以=,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.10、C【解题分析】

通过导函数的图象可知;当在时,;当在时,,这样就可以判断有关极值点的情况.【题目详解】由导函数的图象可知:当在时,,函数单调递增;当在时,,函数单调递减,根据极值点的定义,可以判断是函数的极大值点,故本题选C.【题目点拨】本题考查了通过函数导函数的图象分析原函数的极值点的情况.本题容易受导函数的单调性的干扰.本题考查了识图能力.11、C【解题分析】

先求出事件:数学不排第一节,物理不排最后一节的概率,设事件:化学排第四节,计算事件的概率,然后由公式计算即得.【题目详解】设事件:数学不排第一节,物理不排最后一节.设事件:化学排第四节.,,故满足条件的概率是.故选:C.【题目点拨】本小题主要考查条件概率计算,考查古典概型概率计算,考查实际问题的排列组合计算,属于中档题.12、C【解题分析】分析:题意所求情况分为两种,两白一红,两红一白,两种情况,列式为,除以总的事件个数即可.详解:3个球颜色不同,即分为:两白一红,两红一白,两种情况,列式为,总的事件个数为,概率为.故答案为:C.点睛:这个题目考差了古典概型的计算,对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【题目详解】由约束条件作出可行域,如图所示,化目标函数为,由图可得,当直线过时,直线在轴上的截距最大,所以有最大值为.故答案为1.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14、【解题分析】

根据偶函数性质及解析式满足的条件,可知的对称轴和周期,并由时的解析式,画出函数图像;根据导数的几何意义,求得时的解析式,即可求得的临界值,进而确定的取值范围.【题目详解】函数至少有个零点,由可得函数为偶函数,对任意满足,则函数图像关于对称,函数为周期的周期函数,当时,,则的函数图像如下图所示:由图像可知,根据函数关于轴对称可知,若在时至少有两个零点,则满足至少有个零点,即在时至少有两个交点;当与相切时,满足有两个交点;则,设切点为,则,解方程可得,由导数的几何意义可知,所以满足条件的的取值范围为.故答案为:.【题目点拨】本题考查了函数零点的应用,方程与函数的综合应用,根据导数求函数的交点情况,数形结合法求参数的取值范围,属于难题.15、【解题分析】分析:直接利用复数的乘法运算,化简复数,然后求出复数的虚部.详解:由,可得,,可得,所以,的虚部是,故答案为点睛:本题主要考查乘法运算以及复数共轭复数的概念,意在考查对复数基本概念与基本运算掌握的熟练程度.16、8【解题分析】

根据“凸数”的特点,中间的数字只能是3,4,故分两类,第一类,当中间数字为“3”时,第二类,当中间数字为“4”时,根据分类计数原理即可解决.【题目详解】当中间数字为“3”时,此时有两个(132,231),当中间数字为“4”时,从123中任取两个放在4的两边,有种,则凸数的个数为个.【题目点拨】本题考查分类计数原理,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】

(1)利用线线平行证明平面//平面,(2)以C为坐标原点建系求解即可.【题目详解】(1)证明分别为边的中点,可得,又由直三棱柱可知侧面为矩形,可得故有,由直三棱柱可知侧面为矩形,可得为的中点,又由为的中点,可得.由,平面,,平面,得平面,平面,,可得平面平面.(2)为轴建立空间直角坐标系,如图,则,设平面的一个法向量为,取,有同样可求出平面的一个法向量,,结合图形二面角的余弦值为.【题目点拨】本题属于基础题,线线平行的性质定理和线面平行的性质定理要熟练掌握,利用空间向量的夹角公式求解二面角.18、见解析.【解题分析】分析:直接利用组合数的公式计算证明.====.点睛:(1)本题主要考查组合数的计算,意在考查学生对该知识的掌握水平和基本的运算能力.(2)组合数公式:===(∈,,且)这里两个公式前者多用于数字计算,后者多用于证明恒等式及合并组合数简化计算19、(1);(2).【解题分析】

(1)根据条件列方程组,根据首项和公差求通项公式;(2)数列是等比数列,根据等比数列的前项求和公式求解.【题目详解】设等差数列的首项为,公差,解得:;(2),,是公比为8,首项为的等比数列,.【题目点拨】本题考查等差和等比数列的基本量的求解,属于基础题型,只需熟记公式.20、(1)(2)或.【解题分析】

(1)由题意可得,切线的斜率为,据此可得切线方程为.(2)设与直线平行的切线的切点为,由导函数与切线的关系可得,则切线方程为或.【题目详解】(1)∵,∴,求导数得,∴切线的斜率为,∴所求切线方程为,即.(2)设与直线平行的切线的切点为,则切线的斜率为.又∵所求切线与直线平行,∴,解得,代入曲线方程得切点为或,∴所求切线方程为)或),即或.【题目点拨】本题主要考查导函数研究函数的切线方程及其应用,导数的几何意义等知识,意在考查学生的转化能力和计算求解能力.21、(1);(2)或.【解题分析】

(1)根据题意,先对函数进行求导,再求函数在点处的导数即切线斜率,代入点斜式方程,再化为一般式方程即可。(2)设切点坐标为,将代入得出,利用点斜式表达出直线方程,再将点代入直线方程,即可求解出,从而推得直线方程的解析式。【题目详解】解:(1)由,,则曲线在点处的切线方程为.(2)设切点的坐标为,则所求切线方程为代入点的坐标得,解得或当时,所求直线方程为由(1)知过点且与曲线相切的直线方程为或.故答案为或。【题目点拨】本题主要考查利用导数研究曲线上某点的切线方程。若已知曲线过点,求曲线过点的切线方程,则需分点是切点和不是切点两种情况求解。22、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论