新疆乌鲁木齐市第四中学2024届数学高二第二学期期末检测模拟试题含解析_第1页
新疆乌鲁木齐市第四中学2024届数学高二第二学期期末检测模拟试题含解析_第2页
新疆乌鲁木齐市第四中学2024届数学高二第二学期期末检测模拟试题含解析_第3页
新疆乌鲁木齐市第四中学2024届数学高二第二学期期末检测模拟试题含解析_第4页
新疆乌鲁木齐市第四中学2024届数学高二第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆乌鲁木齐市第四中学2024届数学高二第二学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在区间上的函数的图象如图所示,以为顶点的△ABC的面积记为函数,则函数的导函数的大致图象为()A. B. C. D.2.函数在点处的切线方程为()A. B. C. D.3.过点且与平行的直线与圆:交于,两点,则的长为()A. B. C. D.4.在空间给出下列四个命题:①如果平面内的一条直线垂直于平面内的任意一条直线,则⊥;②如果直线与平面内的一条直线平行,则∥;③如果直线与平面内的两条直线都垂直,则⊥;④如果平面内的两条直线都平行于平面,则∥.其中正确的个数是A. B. C. D.5.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为,两个路口连续遇到红灯的概率为,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为()A. B. C. D.6.若执行如图所示的程序框图,输出的值为,则输入的值是()A. B. C. D.7.已知回归方程,则该方程在样本处的残差为()A.5 B.2 C.1 D.-18.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有A.5种 B.10种C.20种 D.120种9.已知复数在复平面内的对应点关于实轴对称,(为虚数单位),则()A. B. C. D.10.已知函数f(x)=2x-1,(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是()A. B. C. D.11.已知定义在上的函数的导函数为,若,且,则不等式的解集为()A. B. C. D.12.下列命题中,真命题是A.若,且,则中至少有一个大于1B.C.的充要条件是D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为,乙每次投中的概率为,每人分别进行三次投篮.乙恰好比甲多投进2次的概率是______.14.设等差数列的前项和为,若,则________.15.3名男生和3名女生站成一排照相,若男生甲不站在两端,3名女生中,有且只有两个女生相邻,则不同排法的种数为___________.16.已知,且,则的最小值是______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某品牌新款夏装即将上市,为了对新款夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:连锁店A店B店C店售价x(元)808682888490销量y(元)887885758266(1)分别以三家连锁店的平均售价与平均销量为散点,如A店对应的散点为,求出售价与销量的回归直线方程;(2)在大量投入市场后,销量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该新夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)附:,.18.(12分)已知命题,使;命题,使.(1)若命题为假命题,求实数的取值范围;(2)若为真命题,为假命题,求实数的取值范围.19.(12分)已知,,求及的值.20.(12分)已知:方程表示焦点在轴上的椭圆;:双曲线的实轴长大于虚轴长.若命题“”为真命题,“”为假命题,求的取值范围.21.(12分)某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的列联表,已知在这50人中随机抽取2人,这2人都“认为作业量大”的概率为.认为作业量大认为作业量不大合计男生18女生17合计50(1)请完成上面的列联表;(2)根据列联表的数据,能否有的把握认为“认为作业量大”与“性别”有关?附表:0.1000.0500.0250.0100.0012.7063.8415.0246.63510.828附:(其中)22.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,满足(2b﹣c)cosA=acosC.(1)求角A;(2)若,b+c=5,求△ABC的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

连结AB后,AB长为定值,由C点变化得到三角形面积函数的增减性,从而得到面积函数的导数的正负,则答案可求.【题目详解】解:如图,△ABC的底边AB长一定,在点C由A到B的过程中,△ABC的面积由小到大再减小,然后再增大再减小,对应的面积函数的导数先正后负再正到负.且由原图可知,当C位于AB连线和函数f(x)的图象交点附近时,三角形的面积减或增较慢,故选D.【题目点拨】本题主要考查函数的单调性与其导函数的正负之间的关系,属于基础题.2、A【解题分析】

先求出f(x),再利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率即可.【题目详解】∵f(x)=sinx+cosx,∴f(x)=cosx﹣sinx,∴f(1)=1,所以函数f(x)在点(1,f(1))处的切线斜率为1;又f(1)=1,∴函数f(x)=sinx+cosx在点(1,f(1))处的切线方程为:y﹣1=x﹣1.即x﹣y+1=1.故选A.【题目点拨】本题考查利用导数求曲线上在某点切线方程的斜率,考查直线的斜率、导数的几何意义等基础知识,属于基础题.3、D【解题分析】

由题意可得直线,求得圆心到直线距离,再由弦长公式即可求解【题目详解】设直线过点,可得,则直线圆的标准方程为,圆心为,圆心到直线距离,,故选D【题目点拨】本题考查用设一般方程求平行直线方程以及几何法求圆的弦长问题4、A【解题分析】本题考查空间线面关系的判定和性质.解答:命题①正确,符合面面垂直的判定定理.命题②不正确,缺少条件.命题③不正确,缺少两条相交直线都垂直的条件.命题④不正确,缺少两条相交直线的条件.5、C【解题分析】分析:由题意可知,利用条件概率公式可求得的值.详解:设第一个路口遇到红灯的事件为,第二个路口遇到红灯的事件为,则,则,故选C.点睛:本题考查条件概率公式,属于基础题.计算条件概率时一定要注意区分条件概率与独立事件同时发生的概率的区别与联系.6、C【解题分析】

将所有的算法循环步骤列举出来,得出不满足条件,满足条件,可得出的取值范围,从而可得出正确的选项.【题目详解】,;不满足,执行第二次循环,,;不满足,执行第三次循环,,;不满足,执行第四次循环,,;不满足,执行第五次循环,,;满足,跳出循环体,输出的值为,所以,的取值范围是.因此,输入的的值为,故选C.【题目点拨】本题考查循环结构框图的条件的求法,解题时要将算法的每一步列举出来,结合算法循环求出输入值的取值范围,考查分析问题和推理能力,属于中等题.7、D【解题分析】分析:先求当x=3时,的值5,再用4-5=-1即得方程在样本处的残差.详解:当x=3时,,4-5=-1,所以方程在样本处的残差为-1.故答案为:D.点睛:(1)本题主要考查残差的计算,意在考查学生对该知识的掌握水平.(2)残差=实际值-预报值,不要减反了.8、B【解题分析】

根据题意,可看做五个位置排列五个数,把“金、木、土、水、火”用“1,2,3,4,5”代替.根据相克原理,1不与2,5相邻,2不与1,3相邻,依次类推,用分布计数原理写出符合条件的情况.【题目详解】把“金、木、土、水、火”用“1,2,3,4,5”代替.1不与2,5相邻,2不与1,3相邻,所以以“1”开头的排法只有“1,3,5,2,4”或“1,4,2,5,3”两种,同理以其他数开头的排法都是2种,所以共有种.选B.【题目点拨】本题考查分步计数原理的应用,考查抽象问题具体化,注重考查学生的思维能力,属于中档题.9、A【解题分析】

由题意,求得,则,再根据复数的除法运算,即可求解.【题目详解】由题意,复数在复平面内的对应点关于实轴对称,,则,则根据复数的运算,得.故选A.【题目点拨】本题主要考查了复数的表示,以及复数的除法运算,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.10、C【解题分析】

对a分a=0,a<0和a>0讨论,a>0时分两种情况讨论,比较两个函数的值域的关系,即得实数a的取值范围.【题目详解】当a=0时,函数f(x)=2x-1的值域为[1,+∞),函数的值域为[0,++∞),满足题意.当a<0时,y=的值域为(2a,+∞),y=的值域为[a+2,-a+2],因为a+2-2a=2-a>0,所以a+2>2a,所以此时函数g(x)的值域为(2a,+∞),由题得2a<1,即a<,即a<0.当a>0时,y=的值域为(2a,+∞),y=的值域为[-a+2,a+2],当a≥时,-a+2≤2a,由题得.当0<a<时,-a+2>2a,由题得2a<1,所以a<.所以0<a<.综合得a的范围为a<或1≤a≤2,故选C.【题目点拨】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.11、C【解题分析】

构造函数,利用导数判断出函数的单调性,将不等式变形为,结合函数的单调性可解出该不等式.【题目详解】构造函数,则,所以,函数在上单调递减,由,可得,即,解得,因此,不等式的解集为,故选C.【题目点拨】本题考查利用导数求解函数不等式,解决这类不等式的基本步骤如下:(1)根据导数不等式的结构构造新函数;(2)利用导数研究函数的单调性,必要时要考查该函数的奇偶性;(3)将不等式转化为的形式,结合函数的单调性进行求解.12、A【解题分析】

逐一判断每一个选项的真假得解.【题目详解】对于选项A,假设x≤1,y≤1,所以x+y≤2,与已知矛盾,所以原命题正确.当x=2时,2x=x2,故B错误.当a=b=0时,满足a+b=0,但=﹣1不成立,故a+b=0的充要条件是=﹣1错误,∀x∈R,ex>0,故∃x0∈R,错误,故正确的命题是A,故答案为:A【题目点拨】(1)本题主要考查命题的真假的判断,考查全称命题和特称命题的真假,考查充要条件和反证法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”的命题的证明,一般利用反证法.二、填空题:本题共4小题,每小题5分,共20分。13、;【解题分析】

将事件拆分为乙投进3次,甲投进1次和乙投进2次,甲投进0次,再根据二项分布的概率计算公式和独立事件的概率计算即可求得.【题目详解】根据题意,甲和乙投进的次数均满足二项分布,且甲投进和乙投进相互独立;根据题意:乙恰好比甲多投进2次,包括乙投进3次,甲投进1次和乙投进2次,甲投进0次.则乙投进3次,甲投进1次的概率为;乙投进2次,甲投进0次的概率为.故乙恰好比甲多投进2次的概率为.故答案为:.【题目点拨】本题考查二项分布的概率计算,属综合基础题.14、【解题分析】

由可得,然后根据等差数列的通项公式可得,即为所求.【题目详解】设等差数列的公差为,则,∴.∴.故答案为1.【题目点拨】本题考查等差数列中基本量的运算,解题的关键在于将问题转化为和进行处理,属于基础题.15、【解题分析】

先计算有且只有两个女生相邻的排列种数,再计算“在3名女生中,有且只有两个女生相邻,且男生甲在两端的排列”种数,即可得出结果.【题目详解】先考虑3名女生中,有且只有两个女生相邻的排列,共有种,在3名女生中,有且只有两个女生相邻,且男生甲在两端的排列有种,所以,满足题意的不同排法的种数为:种.故答案为:.【题目点拨】本题主要考查计数原理的应用,属于常考题型.16、【解题分析】

有错,可以接着利用基本不等式解得最小值.【题目详解】∵,∴,,当且仅当时不等式取等号,∴,故的最小值是.【题目点拨】本题主要考查利用基本不等式求最值的问题,巧用“”,是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)求出三家连锁店的平均年售价和平均销量,根据回归系数公式计算回归系数,得出回归方程(2)设定价为,得出利润关于的函数,利用二次函数的性质确定出的最值.【题目详解】(1)三家连锁店的平均售价和销售量分别为,,.,.,.售价与销量的回归直线方程为.(2)设定价为元,则利润为.当时,取得最大值,即利润最大.【题目点拨】本题主要考查了线性回归方程的求解,二次函数的性质,属于中档题.18、(1)(2)【解题分析】

(1)若p为假命题,,可直接解得a的取值范围;(2)由题干可知p,q一真一假,分“p真q假”和“p假q真”两种情况讨论,即可得a的范围。【题目详解】解:(1)由命题P为假命题可得:,即,所以实数的取值范围是.(2)为真命题,为假命题,则一真一假.若为真命题,则有或,若为真命题,则有.则当真假时,则有当假真时,则有所以实数的取值范围是.【题目点拨】本题考查根据命题的真假来求变量的取值范围,属于基础题,判断为真的语句叫做真命题,判断为假的语句叫做假命题。19、,.【解题分析】

计算出的取值范围,判断出的符号,利用同角三角函数的平方关系计算出的值,然后利用半角公式计算出的值.【题目详解】,所以,,且,,,由,得.【题目点拨】本题考查利用同角三角函数的基本关系求值,以及利用半角公式求值,在计算时,首先要考查角的象限,确定所求函数值的符号,再利用相关公式进行计算,考查运算求解能力,属于基础题.20、【解题分析】试题分析:若真,则,解得的范围,若真,则,且,解得的范围,由为真命题,为假命题,可得,中有且只有一个为真命题,即必一真一假,即可求得的范围.试题解析:若真,则,解得:.若真,则,且,解得:.∵为真命题,为假命题∴,中有且只有一个为真命题,即必一真一假①若真假,则即;②若假真,则即.∴实数的取值范围为:点睛:根据命题的真假求参数的取值范围的方法:(1)求出当命题,为真命题时所含参数的取值范围;(2)判断命题,的真假性;(3)根据命题的真假情况,利用集合交集和补集的运算,求解参数的取值范围.21、(Ⅰ)见解析(Ⅱ)有的把握认为“认为作业量大”与“性别”有关.【解题分析】

(I)由已知中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论