2024届陕西省铜川市数学高二第二学期期末达标测试试题含解析_第1页
2024届陕西省铜川市数学高二第二学期期末达标测试试题含解析_第2页
2024届陕西省铜川市数学高二第二学期期末达标测试试题含解析_第3页
2024届陕西省铜川市数学高二第二学期期末达标测试试题含解析_第4页
2024届陕西省铜川市数学高二第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省铜川市数学高二第二学期期末达标测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列三句话按“三段论”模式排列顺序正确的是()①是周期函数;②三角函数是周期函数;③是三角函数A.②③① B.②①③ C.①②③ D.③②①2.设随机变量服从正态分布,且,则()A. B. C. D.3.某图书出版公司到某中学开展奉献爱心图书捐赠活动,某班级获得了某品牌的图书共4本,其中数学、英语、物理、化学各一本,现将这4本书随机发给该班的甲、乙、丙、丁4个人,每人一本,并请这4个人在得到的赠书之前进行预测,结果如下:甲说:乙或丙得到物理书;乙说:甲或丙得到英语书;丙说:数学书被甲得到;丁说:甲得到物理书.最终结果显示甲、乙、丙、丁4个人的预测均不正确,那么甲、乙、丙、丁4个人得到的书分别是()A.数学、物理、化学、英语 B.物理、英语、数学、化学C.数学、英语、化学、物理 D.化学、英语、数学、物理4.已知函数,则函数满足()A.最小正周期为 B.图像关于点对称C.在区间上为减函数 D.图像关于直线对称5.已知,,,则()A.0.6 B.0.7 C.0.8 D.0.96.设,下列不等式中正确的是()①②③④A.①和② B.①和③ C.①和④ D.②和④7.命题:“关于x的方程的一个根大于,另一个根小于”;命题:“函数的定义域内为减函数”.若为真命题,则实数的取值范围是()A. B. C. D.8.小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为0.4,在第二个路口遇到红灯的概率为0.5,在两个路口连续遇到红灯的概率是0.2.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是()A.0.2 B.0.3 C.0.4 D.0.59.随机变量的分布列如下表,其中,,成等差数列,且,246则()A. B. C. D.10.某单位为了解用电量(度)与气温(℃)之间的关系,随机统计了某天的用电量与当天气温,并制作了统计表:由表中数据得到线性回归方程,那么表中的值为()气温(℃)181310-1用电量(度)243464A. B. C. D.11.在极坐标系中,圆ρ=2cosθ的圆心坐标为()A.(1,π2) B.(-1,π12.函数的部分图象大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为___14.已知函数,则关于x的不等式的解集是_______.15.从混有张假钞的张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则两张都是假钞的概率是_________.16.在二项展开式中,常数项是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知四边形是矩形,平面,,点在线段上(不为端点),且满足,其中.(1)若,求直线与平面所成的角的大小;(2)是否存在,使是的公垂线,即同时垂直?说明理由.18.(12分)已知函数(其中),.(Ⅰ)若命题“”是真命题,求的取值范围;(Ⅱ)设命题:;命题:.若是真命题,求的取值范围.19.(12分)“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:运动达人参与者合计男教师602080女教师402060合计10040140(Ⅰ)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?(Ⅱ)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.参考公式:,其中.参考数据:0.0500.0100.0013.8416.63510.82820.(12分)已知点,经矩阵对应的变换作用下,变为点.(1)求的值;(2)直线在对应的变换作用下变为直线,求直线的方程.21.(12分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:ρ=4cosθ1-cos2θ,直线l(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设直线l与曲线C交于两点A,B,且线段AB的中点为M2,2,求α22.(10分)已知复数z=a+bi(a,b∈R),若存在实数t,使z=(1)求证:2a+b为定值;(2)若|z-2|<a,求|z|的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据“三段论”的排列模式:“大前提”“小前提”“结论”,分析即可得到正确的顺序.【题目详解】根据“三段论”的排列模式:“大前提”“小前提”“结论”,可知:①是周期函数是“结论”;②三角函数是周期函数是“大前提”;③是三角函数是“小前提”;故“三段论”模式排列顺序为②③①.故选:A【题目点拨】本题考查了演绎推理的模式,需理解演绎推理的概念,属于基础题.2、B【解题分析】

根据正态密度曲线的对称性得出,再由可计算出答案.【题目详解】由于随机变量服从正态分布,由正态密度曲线的对称性可知,因此,,故选B.【题目点拨】本题考查正态分布概率的计算,充分利用正态密度曲线的对称性是解题的关键,考查计算能力,属于基础题.3、D【解题分析】

根据甲说的和丁说的都错误,得到物理书在丁处,然后根据丙说的错误,判断出数学书不在甲处,从而得到答案.【题目详解】甲说:乙或丙得到物理书;丁说:甲得到物理书.因为甲和丁说的都是错误的,所以物理书不在甲、乙、丙处,故物理书在丁处,排除A、B选项;因为丙说:数学书被甲得到,且丙说的是错误的,所以数学书不在甲处,故排除C项;所以答案选D项.【题目点拨】本题考查根据命题的否定的实际应用,属于简单题.4、D【解题分析】∵函数f(x)=cos(x+)sinx=(cosx﹣sinx)•sinx=sin2x﹣•=(sin2x+cos2x)﹣=sin(2x+)+,故它的最小正周期为,故A不正确;令x=,求得f(x)=+=,为函数f(x)的最大值,故函数f(x)的图象关于直线x=对称,且f(x)的图象不关于点(,)对称,故B不正确、D正确;在区间(0,)上,2x+∈(,),f(x)=sin(2x+)+为增函数,故C不正确,故选D.5、D【解题分析】分析:根据随机变量服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得.详解:由题意,

∵随机变量,,

∴故选:D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.6、C【解题分析】分析:利用绝对值三角不等式等逐一判断.详解:因为ab>0,所以a,b同号.对于①,由绝对值三角不等式得,所以①是正确的;对于②,当a,b同号时,,所以②是错误的;对于③,假设a=3,b=2,所以③是错误的;对于④,由绝对值三角不等式得,所以④是正确的.故答案为:C.点睛:(1)本题主要考查绝对值不等式,意在考查学生对该知道掌握水平和分析推理能力.(2)对于类似这样的题目,方法要灵活,有的可以举反例,有的可以直接证明判断.7、B【解题分析】

通过分析命题为假命题只能真,于是可得到答案.【题目详解】命题真等价于即;由于的定义域为,故命题为假命题,而为真命题,说明真,故选B.【题目点拨】本题主要考查命题真假判断,意在考查学生的转化能力,逻辑推理能力,分析能力,难度中等.8、D【解题分析】

根据条件概率,即可求得在第一个路口遇到红灯,在第二个路口也遇到红灯的概率.【题目详解】记“小明在第一个路口遇到红灯”为事件,“小明在第二个路口遇到红灯”为事件“小明在第一个路口遇到了红灯,在第二个路口也遇到红灯”为事件则,,故选D.【题目点拨】本题考查了条件概率的简单应用,属于基础题.9、A【解题分析】

根据a,b,c成等差数列,a+b+c=1,可解得a,b,c,进而求出.【题目详解】由,得.则,故选A.【题目点拨】本题考查根据随机变量X的分布列求概率,分析题目条件易求出.10、C【解题分析】

由表中数据计算可得样本中心点,根据回归方程经过样本中心点,代入即可求得的值.【题目详解】由表格可知,,根据回归直线经过样本中心点,代入回归方程可得,解得,故选:C.【题目点拨】本题考查了线性回归方程的简单应用,由回归方程求数据中的参数,属于基础题.11、D【解题分析】

把圆的极坐标方程转化为直角坐标方程,求出圆心直角坐标即可.【题目详解】由ρ=2cosθ,得ρ2=2ρcosθ,化简为直角坐标方程为:x2+y2-2x=0,即x-12所以圆心(1,0),即圆心(1,0)的极坐标为(1,0).故选:D.【题目点拨】本题考查圆的极坐标方程和直角坐标方程的互化,属于基础题.12、A【解题分析】

判断函数的奇偶性,排除B,确定时函数值的正负,排除C,再由时函数值的变化趋势排除D.从而得正确结论.【题目详解】因为是偶函数,排除B,当时,,,排除C,当时,排除D.故选:A.【题目点拨】本题考查由解析式选图象,可能通过研究函数的性质,如奇偶性、单调性、对称性等排除一些选项,通过特殊的函数值、特殊点如与坐标轴的交点,函数值的正负等排除一些,再可通过函数值的变化趋势又排除一些,最多排除三次,剩下的最后一个选项就是正确选项.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

确定系统抽样间隔k=16,根据样本中含编号为28的产品,即可求解,得到答案.【题目详解】由系统抽样知,抽样间隔k=80因为样本中含编号为28的产品,则与之相邻的产品编号为12和44,故所取出的5个编号依次为12,28,44,60,1,即最大编号为1.【题目点拨】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的方法,确定好抽样的间隔是解答的关键,着重考查了运算与求解能力,属于基础题.14、【解题分析】

求出是奇函数,且在定义域上是单减函数,变形再利用单调性解不等式可得解.【题目详解】,是奇函数,又是上的减函数,是上的增函数,由函数单调性质得是上的减函数.,则,由奇函数得且是上的减函数.,,又不等式的解集是故答案为:【题目点拨】本题考查利用函数奇偶性和单调性解指对数方程或不等式.有关指对数方程或不等式的求解思路:利用指对数函数的单调性,要特别注意底数的取值范围,并在必要时进行分类讨论.15、【解题分析】试题分析:设事件表示“抽到的两张都是假钞”,事件表示“抽到的两张至少有一张假钞”,则所求的概率即为,因为,所以,故答案为.考点:条件概率.【方法点睛】本题主要考查了条件概率的求法,考查了等可能事件的概率,体现了转化的思想,注意准确理解题意,看是在什么条件下发生的事件,本题是求条件概率,而不是古典概型,属于基础题.解答时,先设表示“抽到的两张都是假钞”,表示“抽到的两张至少有一张假钞”,则所求的概率即为,再根据条件概率的公式求解.16、60【解题分析】

首先写出二项展开式的通项公式,并求指定项的值,代入求常数项.【题目详解】展开式的通项公式是,当时,.故答案为:60【题目点拨】本题考查二项展开式的指定项,意在考查公式的熟练掌握,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不存在满足条件,理由见详解.【解题分析】

(1)建立空间直角坐标系,根据直线的方向向量与平面法向量的夹角余弦值得到线面角的正弦值,从而计算出线面角的大小;(2)假设存在满足,根据表示出的坐标,即可求解出的坐标表示,根据、求解出的值.【题目详解】(1)建立空间直角坐标系如图所示:当时,为中点,因为,所以,所以,取平面一个法向量,设直线与平面所成的角的大小为,所以,所以,所以,所以直线与平面所成的角的大小为;(2)设存在满足条件,因为,所以,所以,又因为,当是的公垂线时,所以,所以无解即假设不成立,所以不存在满足条件.【题目点拨】本题考查利用空间向量求解线面角、公垂线问题,难度一般.(1)利用直线的方向向量以及平面的法向量求解线面角时,要注意求出的直线方向向量与平面法向量夹角余弦的绝对值即为线面角的正弦;(2)公垂线的存在性问题可先假设成立,然后根据垂直关系得到向量的数量积为零,由此判断存在性是否成立.18、(Ⅰ);(Ⅱ)【解题分析】试题分析:(1),即,,解得;(2)是真命题,则都是真命题.当时,,故需.或,故,.当时,,故需.,所以,.综上所述,.试题解析:(1)∵命题“”是真命题,即,∴,解得,∴的取值范围是;(2)∵是真命题,∴与都是真命题,当时,,又是真命题,则∵,∴,∴或∴,解得当时,∵是真命题,则,使得,而∵,∴,∴,解得求集合的交集可得.考点:命题真假性判断,含有逻辑联结词的命题.19、(1)不能在犯错误的概率不超过的前提下认为获得“运动达人”称号与性别有关;(2)见解析.【解题分析】

(1)计算比较3.841即可得到答案;(2)计算出男教师和女教师人数,的所有可能取值有,分别计算概率可得分布列,于是可求出数学期望.【题目详解】(1)根据列联表数据得:不能在犯错误的概率不超过的前提下认为获得“运动达人”称号与性别有关(2)根据分层抽样方法得:男教师有人,女教师有人由题意可知,的所有可能取值有则;;;的分布列为:【题目点拨】本题主要考查独立性检验统计思想,超几何分布的分布列与数学期望,意在考查学生的分析能力,计算能力.20、(1);(2)【解题分析】

(1)根据题意,结合题中的条件,利用矩阵乘法公式,列出满足条件的等量关系式,求得结果;(2)设直线上任意一点经矩阵变换为,利用矩阵乘法得出坐标之间的关系,利用在直线上,代入求得,进而得出直线的方程.【题目详解】(1)解得∴;(2)由(1)知:设直线上任意一点经矩阵变换为则∵∴即∴直线的方程为.【题目点拨】该题考查的是有关点和直线经矩阵变换的问题,在解题的过程中,注意变换的规则,掌握矩阵的乘法,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论