版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省淮北师大附中数学高二第二学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,∈R,且>,则A. B. C. D.2.甲射击时命中目标的概率为,乙射击时命中目标的概率为,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为()A. B. C. D.3.《高中数学课程标准》(2017版)规定了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()(注:雷达图(RadarChart),又可称为戴布拉图、蜘蛛网图(SpiderChart),可用于对研究对象的多维分析)A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体水平优于甲4.设,则等于()A. B. C. D.5.体育课上,小红、小方、小强、小军四位同学都在进行足球、篮球、羽毛球、乒乓球等四项体自运动中的某一种,四人的运动项目各不相同,下面是关于他们各自的运动项目的一些判断:①小红没有踢足球,也没有打篮球;②小方没有打篮球,也没有打羽毛球;③如果小红没有打羽毛球,那么小军也没有踢足球;④小强没有踢足球,也没有打篮球.已知这些判断都是正确的,依据以上判断,请问小方同学的运动情况是()A.踢足球B.打篮球C.打羽毛球D.打乒乓球6.已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则()A. B. C. D.7.已知函数,将其图象向右平移个单位长度后得到函数的图象,若函数为偶函数,则的最小值为()A. B. C. D.8.在的展开式中,项的系数为().A. B. C. D.9.已知结论:“在正三角形中,若是边的中点,是三角形的重心,则.”若把该结论推广到空间,则有结论:在棱长都相等的四面体中,若的中心为,四面体内部一点到四面体各面的距离都相等,则()A. B. C. D.10.已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为A.13万件 B.11万件C.9万件 D.7万件11.已知函数则使函数g(x)=f(x)+x-m有零点的实数m的取值范围是()A.[0,1) B.(-∞,1)C.(-∞,1]∪(2,+∞) D.(-∞,0]∪(1,+∞)12.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)14.公元前3世纪,古希腊数学家阿波罗尼斯在前人的基础上写了一部划时代的著作《圆锥曲线论》,该书给出了当时数学家们所研究的六大轨迹问题,其中之一便是“到两个定点的距离之比等于不为1的常数的轨迹是圆”,简称“阿氏圆”.用解析几何方法解决“到两个定点,的距离之比为的动点轨迹方程是:”,则该“阿氏圆”的圆心坐标是______,半径是_____.15.已知球O的半径为R,点A在东经120°和北纬60°处,同经度北纬15°处有一点B,球面上A,B两点的球面距离为___________;16.已知平面向量,,满足,,,则的最大值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且.(Ⅰ)若是偶函数,当时,,求时,的表达式;(Ⅱ)若函数在上是减函数,求实数的取值范围.18.(12分)已知函数.(Ⅰ)若函数在处取得极值,求的值;(Ⅱ)设,若函数在定义域上为单调增函数,求的最大整数值.19.(12分)(1)设:实数x满足|x﹣m|<2,设:实数x满足>1;若¬p是¬q的必要不充分条件,求实数m的取值范围(2)已知p:函数f(x)=ln(x2﹣ax+3)的定义城为R,已知q:已知且,指数函数g(x)=(a﹣1)x在实数域内为减函数;若¬p∨q为假命题,求实数a的取值范围.20.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求直线的极坐标方程;(2)若直线与曲线交于,两点,求的面积.21.(12分)如图是一个二次函数y=f(x)的图象(1)写出这个二次函数的零点(2)求这个二次函数的解析式(3)当实数k在何范围内变化时,函数g(x)=f(x)-kx在区间[-2,2]上是单调函数?22.(10分)已知函数.(1)当时,求不等式的解集;(2)若不等式的解集包含,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:带特殊值验证即可详解:排除A,B.排除C.故选D点睛:带特殊值是比较大小的常见方法之一.2、D【解题分析】
记事件甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件的对立事件的概率,再利用对立事件的概率公式可得出事件的概率.【题目详解】记事件甲乙两人各自射击同一目标一次,该目标被击中,则事件甲乙两人各自射击同一目标一次,两人都未击中目标,由独立事件的概率乘法公式得,,故选D.【题目点拨】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.3、D【解题分析】
根据雷达图,依次判断每个选项的正误得到答案.【题目详解】根据雷达图得甲的数据分析素养低于乙,所以A错误根据雷达图得甲的数学建模素养等于数学抽象素养,所以B错误根据雷达图得乙的六大素养中数学建模和数学抽象最差,所以C错误根据雷达图得乙整体为27分,甲整体为22分,乙的六大素养整体水平优于甲,所以D正确故答案选D【题目点拨】本题考查了雷达图,意在考查学生解决问题的能力.4、C【解题分析】
利用计算出定积分的值.【题目详解】依题意得,故选C.【题目点拨】本小题主要考查定积分的计算,考查运算求解能力,属于基础题.5、A【解题分析】分析:由题意结合所给的逻辑关系进行推理论证即可.详解:由题意可知:小红、小方、小强都没有打篮球,故小军打篮球;则小军没有踢足球,且已知小红、小强都没有踢足球,故小方踢足球.本题选择A选项.点睛:本题主要考查学生的推理能力,意在考查学生的转化能力和计算求解能力.6、A【解题分析】
根据直线斜率与倾斜角的关系求出tanθ的值,原式利用诱导公式化简,再利用同角三角函数间的基本关系变形,将tanθ的值代入计算即可求出值.【题目详解】解:由已知可得,tanθ=2,则原式1.故选A.【题目点拨】此题考查了诱导公式的作用,三角函数的化简求值,以及直线斜率与倾斜角的关系,熟练掌握诱导公式是解本题的关键.7、B【解题分析】
由平移变换得到,由偶函数的性质得到,从而求.【题目详解】由题意得:,因为为偶函数,所以函数的图象关于对称,所以当时,函数取得最大值或最小值,所以,所以,解得:,因为,所以当时,,故选B.【题目点拨】平移变换、伸缩变换都是针对自变量而言的,所以函数向右平移个单位长度后得到函数,不能错误地得到.8、A【解题分析】二项式展开式的通项为。所以展开式中项的系数为.选.9、C【解题分析】解:由平面图形的性质类比猜想空间几何体的性质,一般的思路是:点到线,线到面,或是二维变三维;由题目中“在正三角形ABC中,若D是边BC中点,G是三角形ABC的重心,则AG:GD=2:1”,我们可以推断:“在正四面体ABCD中,若M是底面BCD的中心,O是正四面体ABCD的中心,则AO:OM=3:1.”故答案为“在正四面体ABCD中,若M是底面BCD的中心,O是正四面体ABCD的中心,则AO:OM=3:1.”10、C【解题分析】解:令导数y′=-x2+81>0,解得0<x<9;令导数y′=-x2+81<0,解得x>9,所以函数y=-x3+81x-234在区间(0,9)上是增函数,在区间(9,+∞)上是减函数,所以在x=9处取极大值,也是最大值,故选C.11、D【解题分析】试题分析:函数的零点就是方程的根,作出的图象,观察它与直线的交点,得知当时,或时有交点,即函数有零点.考点:函数的零点.点评:本题充分体现了数形结合的数学思想.函数的零点、方程的根、函数图像与x轴的交点,做题时注意三者之间的等价转化.12、D【解题分析】分析:根据题意,设,对求导,利用导数与函数单调性的关系分析可得在上为减函数,分析的特殊值,结合函数的单调性分析可得在区间和上都有,结合函数的奇偶性可得在区间和上都有,进而将不等式变形转化可得或,解可得x的取值范围,即可得答案.详解:根据题意,设,其导数,又当时,,则有,即函数在上为减函数,又,则在区间上,,又由,则,在区间上,,又由,则,则在区间和上都有,又由为奇函数,则在区间和上都有,或,解可得:或.则x的取值范围是.故选:D.点睛:本题考查函数的导数与函数的单调性的关系,以及不等式的解法,关键是分析与的解集.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:根据排列定义求结果.详解:将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有=5×4×3=60(种).点睛:本题考查排列定义,考查基本求解能力.14、2【解题分析】
将圆化为标准方程即可求得结果.【题目详解】由得:圆心坐标为:,半径为:本题正确结果:;【题目点拨】本题考查根据圆的方程求解圆心和半径的问题,属于基础题.15、;【解题分析】
根据纬度差可确定,根据扇形弧长公式可求得所求距离.【题目详解】在北纬,在北纬,且均位于东经两点的球面距离为:本题正确结果:【题目点拨】本题考查球面距离的求解问题,关键是能够通过纬度确定扇形圆心角的大小,属于基础题.16、【解题分析】
只有不等号左边有,当为定值时,相当于存在的一个方向使得不等式成立.适当选取使不等号左边得到最小值,且这个最大值不大于右边.【题目详解】当为定值时,当且仅当与同向时取最小值,此时,所以.因为,所以,所以所以,当且仅当且与同向时取等号.故答案为.【题目点拨】本题考察平面向量的最值问题,需要用到转化思想、基本不等式等,综合性很强,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】分析:⑴根据偶函数性质,当时,,求出表达式⑵复合函数同增异减,并且满足定义域详解:(Ⅰ)∵是偶函数,所以,又当时,∴当时,,∴,所以当时,.(Ⅱ)因为在上是减函数,要使在有意义,且为减函数,则需满足解得,∴所求实数的取值范围为.点睛:本题主要考查了复合函数,关键是分解为两个基本函数,利用同增异减的结论研究其单调性,再求参数范围。18、(1);(2)的最大整数值为2.【解题分析】分析:(1)先求导数,再根据根据极值定义得0,解得的值,最后列表验证.(2)先转化为恒成立,再利用结论(需证明),得,可得当时,恒成立;最后举反例说明当时,,即不恒成立.详解:(Ⅰ),若函数在处取得极值,则,解得.经检验,当时,函数在处取得极值.综上,.(Ⅱ)由题意知,,.若函数在定义域上为单调增函数,则恒成立.先证明.设,则.则函数在上单调递减,在上单调递增.所以,即.同理,可证,所以,所以.当时,恒成立;当时,,即不恒成立.综上所述,的最大整数值为2.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.19、(1);(2)【解题分析】
(1)解绝对值不等式求得中的范围,解分式不等式求得中的取值范围.由是的必要不充分条件知是的充分不必要条件,由此列不等式组,解不等式组求得的取值范围.(2)根据的定义域为求得为真时,的取值范围.根据的单调性求得为假时的取值范围.为假命题可知真假,由此列不等式组,解不等式组求得的取值范围.【题目详解】(1)记,即由条件是的必要不充分条件知是的充分不必要条件,从而有是的真子集,则,可得,故(2)当为真命题时,函数的定义域为,则恒成立,即,从而;条件为假命题可知真假,当为假命题时有即从而当真假有即,故【题目点拨】本小题主要考查绝对值不等式、分式不等式的解法,考查对数函数的定义域,考查指数函数的单调性,考查含有简单逻辑联结词命题真假性有关知识,属于中档题.20、(1)(2)【解题分析】
(1)先消去参数,化为直角坐标方程,再利用求解.(2)直线与曲线方程联立,得,求得弦长和点到直线的距离,再求的面积.【题目详解】(1)由已知消去得,则,所以,所以直线的极坐标方程为.(2)由,得,设,两点对应的极分别为,,则,,所以,又点到直线的距离所以【题目点拨】本题主要考查参数方程、直角坐标方程及极坐标方程的转化和直线与曲线的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.21、(1)零点是-3,1(2)y=-x2-2x+3(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年化工行业除尘器定制合同
- 2024年二手摄影器材买卖合同范本
- 2024年城市供水供电设施建设承包合同
- 2024年IT运维服务个性化定制合同
- 2024年企业间短期借款合同标准文本
- 2024年公园绿化工程承包合同
- 2024年借款合同保证人责任界定
- 2024年大型化工项目投资与合作合同
- 2024年城市住宅装修设计与施工合同
- 2024年合作开发合同终止协议
- 测试计划-10篇模板
- 苏科版2022-2023二年级上册劳动与技术《07小鸟归巢》教案
- 预警评分系统课件
- 交联电缆运行时的热特性参数设计计算
- 电子行业大硅片深度报告:半导材料第一蓝海硅片融合工艺创新
- 三角堰水头高度与流量查算表
- 福建广播电视大学中国现当代文学名著导读(2)-形成性考核三答案
- 污水厂日常水质监测管理方案
- 癫痫持续状态课件
- 滋养细胞疾病超声诊断课件
- 2020 ACLS-PC-SA课前自我测试试题及答案
评论
0/150
提交评论