




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市河西区新华中学数学高二下期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国古代数学名著《九章算术•商功》中记载了一种名为“堑堵”的几何体:“邪解立方得二堑堵邪解堑堵”錾堵是一个长方体沿不在同一表面上的相对两棱斜截所得的立体图形其正视图和俯视图(直角三角形)如图所示,则该“堑堵”的外接球的大圆面积为()A. B. C. D.2.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有()A.8种 B.15种 C.种 D.种3.若函数在其定义域内的一个子区间上不是单调函数,则实数的取值范围是()A. B. C. D.4.已知,则()A. B.3 C. D.5.将一枚质地均匀的硬币抛掷四次,设为正面向上的次数,则等于()A. B. C. D.6.已知分别为内角的对边,且成等比数列,且,则=()A. B. C. D.7.若,则m等于()A.9 B.8 C.7 D.68.若,则“复数的共轭复数在复平面内对应的点在第二象限”是“”()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.若△ABC的内角A,B,C的对边分别为a,b,c,且,△ABC的面,则a=()A.1 B. C. D.10.已知PA,PB是圆C:的两条切线(A,B是切点),其中P是直线上的动点,那么四边形PACB的面积的最小值为()A. B. C. D.11.内接于半径为的半圆且周长最大的矩形的边长为().A.和 B.和 C.和 D.和12.设函数,则()A.为的极大值点 B.为的极小值点C.为的极大值点 D.为的极小值点二、填空题:本题共4小题,每小题5分,共20分。13.观察下面一组等式:,,,,根据上面等式猜测,则__________.14.设为曲线上的点,且曲线在点处切线倾斜角的取值范围为,则点横坐标的取值范围为__________.15.展开式中项的系数为__________.16.数列{an}满足,若{an}单调递增,则首项a1的范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某投资公司对以下两个项目进行前期市场调研:项目:通信设备.根据调研,投资到该项目上,所有可能结果为:获利、损失、不赔不赚,且这三种情况发生的概率分别为;项目:新能源汽车.根据调研,投资到该项目上,所有可能结果为:获利、亏损,且这两种情况发生的概率分别为.经测算,当投入两个项目的资金相等时,它们所获得的平均收益(即数学期望)也相等.(1)求的值;(2)若将万元全部投到其中的一个项目,请你从投资回报稳定性考虑,为投资公司选择一个合理的项目,并说明理由.18.(12分)某生产企业研发了一种新产品,该新产品在某网店试销一个阶段后得到销售单价和月销售量之间的一组数据,如下表所示:销售单价(元)99.51010.511月销售量(万件)1110865(1)根据统计数据,求出关于的回归直线方程,并预测月销售量不低于12万件时销售单价的最大值;(2)生产企业与网店约定:若该新产品的月销售量不低于10万件,则生产企业奖励网店1万元;若月销售量不低于8万件且不足10万件,则生产企业奖励网店5000元;若月销售量低于8万件,则没有奖励.现用样本估计总体,从上述5个销售单价中任选2个销售单价,下个月分别在两个不同的网店进行销售,求这两个网店下个月获得奖励的总额的分布列及其数学期望.参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:,.19.(12分)选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系,已知曲线的方程为,直线的参数方程为(为参数).(1)将的方程化为直角坐标方程;(2)为上一动点,求到直线的距离的最大值和最小值.20.(12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球3次均未命中的概率为,甲投球未命中的概率恰是乙投球未命中的概率的2倍.(Ⅰ)求乙投球的命中率;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.21.(12分)已知函数,其中为自然对数的底数.(1)若,求的最小值;(2)若,证明:.22.(10分)在平面直角坐标系中,以为极点,轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线的参数方程为(为参数),两曲线相交于,两点.(1)写出曲线的直角坐标方程和直线的普通方程;(2)若,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
首先根据题意得到“堑堵”是半个长方体的直三棱柱,再求其外接球的大圆面积即可.【题目详解】由题知:“堑堵”是半个长方体的直三棱柱,如图所示:设外接球大圆的半径为,.,所以外接球的大圆面积为.故选:B【题目点拨】本题主要考查三棱柱的外接球,同时考查三视图的直观图,属于中档题.2、C【解题分析】由题意得,每一封不同的电子邮件都有三种不同的投放方式,所以把封电子邮件投入个不同的邮箱,共有种不同的方法,故选C.3、B【解题分析】分析:求出导函数,求得极值点,函数在含有极值点的区间内不单调.详解:,此函数在上是增函数,又,因此是的极值点,它在含有的区间内不单调,此区间为B.故选B.点睛:本题考查用导数研究函数的极值,函数在不含极值点的区间内一定是单调函数,因此此只要求出极值点,含有极值点的区间就是正确的选项.4、D【解题分析】
根据正弦的倍角公式和三角函数的基本关系式,化为齐次式,即可求解,得到答案.【题目详解】由题意,可得,故选D.【题目点拨】本题主要考查了正弦的倍角公式,以及三角函数的基本关系式的化简、求值,着重考查了推理与运算能力,属于基础题.5、C【解题分析】分析:先确定随机变量得取法,再根据独立重复试验求概率.详解:因为所以选C.点睛:次独立重复试验事件A恰好发生次得概率为.其中为1次试验种A发生得概率.6、C【解题分析】因为成等比数列,所以,利用正弦定理化简得:,又,所以原式=所以选C.点睛:此题考察正弦定理的应用,要注意求角度问题时尽量将边的条件转化为角的等式,然后根据三角函数间的关系及三角形内角和的关系进行解题.7、C【解题分析】分析:根据排列与组合的公式,化简得出关于的方程,解方程即可.详解:,,即,解得,故选C.点睛:本题主要考查排列公式与组合公式的应用问题,意在考查对基本公式掌握的熟练程度,解题时应熟记排列与组合的公式,属于简单题.8、C【解题分析】
先将复数化简成形式,得其共轭复数,通过对应的点在第二象限求出的取值范围,即可判断与的关系.【题目详解】,所以共轭复数,因为共轭复数在复平面内对应的点在第二象限所以,解得所以“复数的共轭复数在复平面内对应的点在第二象限”是“”充要条件,故选C【题目点拨】本题考查复数的基本运算与充要关系,解题的关键是先通过条件求出的取值范围,属于一般题.9、A【解题分析】
根据三角形面积公式可得,利用正余弦平方关系,即可求得正余弦值,由余弦定理可得.【题目详解】因为,,面积,所以.所以.所以,.所以.故选A.【题目点拨】本题考查正余弦定理,面积公式,基础题.10、C【解题分析】
配方得圆心坐标,圆的半径为1,由切线性质知,而的最小值为C点到的距离,由此可得结论.【题目详解】由题意圆的标准方程为,∴圆心为,半径为.又,到直线的距离为,∴.故选C.【题目点拨】本题考查圆切线的性质,考查面积的最小值,解题关键是把四边形面积用表示出来,而的最小值为圆心到直线的距离,从而易得解.11、D【解题分析】
作出图像,设矩形,圆心为,,再根据三角函数关系表达矩形的长宽,进而列出周长的表达式,根据三角函数的性质求解即可.【题目详解】如图所示:设矩形,,由题意可得矩形的长为,宽为,故矩形的周长为,其中,.故矩形的周长的最大值等于,此时,.即,再由可得,故矩形的长为,宽为,故选:D.【题目点拨】本题主要考查了根据角度表达几何中长度的关系再求最值的问题,需要根据题意设角度,结合三角函数与图形的关系求出边长,再利用三角函数的性质求解.属于中档题.12、D【解题分析】试题分析:因为,所以.又,所以为的极小值点.考点:利用导数研究函数的极值;导数的运算法则.点评:极值点的导数为0,但导数为0的点不一定是极值点.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由已知可得,因此,从而.点睛:归纳推理是通过观察个别情况发现某些相同本质,从已知相同本质中推出一个明确表述的一般性命题,本题是数的归纳,它包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系有关的知识,如等差数列、等比数列等.14、【解题分析】
由切线的倾斜角范围为,得知切线斜率的取值范围是,然后对曲线对应的函数求导得,解不等式可得出点的横坐标的取值范围.【题目详解】由于曲线在点处的切线的倾斜角的取值范围是,则切线斜率的取值范围是,对函数求导得,令,即,解不等式,得或;解不等式,即,解得.所以,不等式组的解集为.因此,点的横坐标的取值范围是.【题目点拨】本题考查导数的几何意义,考查切线的斜率与点的横坐标之间的关系,考查计算能力,属于中等题.15、1【解题分析】分析:根据二项式定理的通项公式,再分情况考虑即可求解.详解:展开式中x项的系数:二项式(1+x)5由通项公式当(1﹣x)提供常数项时:r=1,此时x项的系数是=2018,当(1﹣x)提供一个x时:r=0,此时x项的系数是﹣1×=﹣1合并可得(1﹣x)(1+x)5展开式中x项的系数为1.故答案为:1.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.16、(﹣∞,﹣1)∪(3,+∞)【解题分析】
先表示出,结合{an}单调递增可求首项a1的范围.【题目详解】因为,所以,解得或,则有或由于,所以或解得或,故答案为:.【题目点拨】本题主要考查数列的单调性,数列的单调性一般通过相邻两项差的符号来确定,侧重考查逻辑推理和数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,;(2)从风险控制角度,建议该投资公司选择项目.【解题分析】
(1)根据概率和为1列方程求得的值,再利用分布列和数学期望列方程组求得、的值;(2)计算均值与方差,比较即可得出结论.【题目详解】(1)依题意,,,设投入到项目的资金都为万元,变量和分别表示投资项目和所获得的利润,则和的分布列分别为由分布列得,,因为所以,即,又,解得,;,,(2)当投入万元资金时,由(1)知,所以,,,因为,说明虽然项目和项目的平均收益相等,但项目更稳妥,所以,从风险控制角度,建议该投资公司选择项目.【题目点拨】本题主要考查了离散型随机变量的分布列与数学期望和方差的计算问题,是中档题.18、(1);月销售量不低于12万件时销售单价的最大值为;(2)分布列见详解,数学期望为.1(万元).【解题分析】
(1)先计算的平均数,根据已知公式,代值计算即可;再根据所求方程,解不等式即可;(2)根据题意,求得的可取值,结合题意求得分布列,再根据分布列求数学期望即可.【题目详解】(1)容易知;;又因为,,故可得,,故所求回归直线方程为:.令,故可得.故月销售量不低于12万件时销售单价的最大值为.(2)容易知可取值为:,(单位为:万元)故,,,..故其分布列如下所示:则(万元).【题目点拨】本题考查线性回归直线方程的求解,以及离散型随机变量的分布列和数学期望的求解,属综合中档题.19、(1)(2)最大值是和最小值是.【解题分析】分析:(1)利用极坐标公式化成直角坐标方程.(2)先求出直线的直角坐标方程为,再利用圆心到直线的距离求到直线的距离的最大值是和最小值是.详解:(1)因为曲线的方程为,则,所以的直角坐标方程为,即.(2)因为直线的参数方程为(为参数),所以直线的直角坐标方程为,因为圆心到直线的距离,则直线与圆相离,所以所求到直线的距离的最大值是和最小值是.点睛:(1)本题主要考查极坐标、参数方程和直角坐标的互化,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)解答第2问的关键是数形结合.20、(1)(2)分布列见解析,【解题分析】【试题分析】(1)依据题设条件运用对立事件及独立事件的概率公式建立方程求解;(2)先求出,,的概率,再写出概率分布表,运用数学期望的计算公式计算:解:设“甲投球一次命中”为事件,“乙投球一次命中”为事件.(Ⅰ)由题意得:,解得,所以乙投球的命中率为.(Ⅱ)由题设和(Ⅰ)知,甲投球的命中率为,则有,,,,可能的取值为0,1,2,3,故,,,,的分布列为:0123的数学期望.点睛:随机变量的概率及分布是高中数学中的选修内容,也是高考考查的重要考点。解答本题的第一问时,充分依据题设条件借助方程思想,运用对立事件及独立事件的概率公式建立方程,然后通过解方程求出其概率是;解答第二问时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宠物狗血尿治疗-宠物狗贫血治疗方法
- 2025年测风塔市场分析报告
- 中国橡胶板、管、带制造项目创业计划书
- 安全方案培训课件
- 车辆代理代办合同协议书
- 中国带盖方型垃圾桶行业市场前景预测及投资价值评估分析报告
- 合同违约免责协议书范本
- 门店全屋定制合同协议书
- 长春健身器材设备项目商业计划书-图文
- 2025年工艺美术专业建设的可行性论证报告
- 案例研究-海洋水产养殖(海洋牧场及渔业综合体)项目投资方案可行性
- 2025届河南省许昌市名校高三下学期第二次模拟考试英语试题(原卷版+解析版)
- 2025中国储备粮管理集团有限公司贵州分公司招聘22人笔试参考题库附带答案详解
- 蛛网膜下腔出血介入术后护理
- 2025年临床执业医师考试的院前急救知识试题及答案
- 数据治理架构试题及答案
- 会考地理综合题答题模板+简答题归纳-2025年会考地理知识点梳理
- 广州中小企业招工难问题研究
- 水泵工初级考试题及答案
- 2025年度综合物业管理外包服务专项合同
- 2026年版广西高等职业教育考试(新职教高考)普高生专用升高职大专《职业适应性测试》模拟试卷(第3套)
评论
0/150
提交评论