2024届安徽亳州利辛县阚疃金石中学数学高二下期末质量跟踪监视试题含解析_第1页
2024届安徽亳州利辛县阚疃金石中学数学高二下期末质量跟踪监视试题含解析_第2页
2024届安徽亳州利辛县阚疃金石中学数学高二下期末质量跟踪监视试题含解析_第3页
2024届安徽亳州利辛县阚疃金石中学数学高二下期末质量跟踪监视试题含解析_第4页
2024届安徽亳州利辛县阚疃金石中学数学高二下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽亳州利辛县阚疃金石中学数学高二下期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知有相同两焦点F1、F2的椭圆+y2=1和双曲线-y2=1,P是它们的一个交点,则ΔF1PF2的形状是()A.锐角三角形 B.直角三角形 C.钝有三角形 D.等腰三角形2.若函数,则()A.1 B. C.27 D.3.由曲线,直线所围成的平面图形的面积为()A. B. C. D.4.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次验,并且利用线性回归方程,求得回归直线分别为和.已知两个人在试验中发现对变x的观测数据的平均值都是s,对变量y的观测数据的平均值都为t,那么下列说法正确的()A.与相交于点(s,t)B.与相交,交点不一定是(s,t)C.与必关于点(s,t)对称D.与必定重合5.函数的单调递增区间为()A. B.C. D.6.已知扇形的圆心角为,弧长为,则扇形的半径为()A.7 B.6 C.5 D.47.用反证法证明某命题时,对结论:“自然数中恰有一个偶数”正确的反设为()A.中至少有两个偶数 B.中至少有两个偶数或都是奇数C.都是奇数 D.都是偶数8.某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5,6的六个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球,若与第一次取出的两个小球号码相同,则为中奖,按照这样的规则摸奖,中奖的概率为()A. B. C. D.9.已知函数,则()A. B.e C. D.110.已知函数的导函数的图像如图所示,则()A.有极小值,但无极大值 B.既有极小值,也有极大值C.有极大值,但无极小值 D.既无极小值,也无极大值11.有甲、乙、丙三位同学,分别从物理、化学、生物、政治、历史五门课中任选一门,要求物理必须有人选,且每人所选的科目各不相同,则不同的选法种数为()A.24 B.36 C.48 D.7212.下列命题中:①“x>y”是“x②已知随机变量X服从正态分布N3,  ③线性回归直线方程y=bx+④命题“∃x∈R,x2+x+1>0其中正确的个数是()A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知正项数列{an}满足,若a1=2,则数列{an}的前n项和为________.14.的展开式中含项的系数为_________.15.若关于的不等式的解集是空集,则实数的取值范围是__________.16.设,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求函数的值域;(2)若,求实数的取值范围.18.(12分)在平面直角坐标系中,曲线的参数方程为(其中为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,试求直线与曲线的交点的直角坐标.19.(12分)已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求函数的极值.20.(12分)如图,在矩形中,,,是的中点,以为折痕将向上折起,变为,且平面平面.(1)求证:;(2)求二面角的大小.21.(12分)已知函数.(1)若函数的最小值为2,求实数的值;(2)若当时,不等式恒成立,求实数的取值范围.22.(10分)已知函数在处取得极值.确定a的值;若,讨论的单调性.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据椭圆和双曲线定义:又;故选B2、C【解题分析】

求导后代入可构造方程求得,从而得到,代入可求得结果.【题目详解】,,解得:,,.故选:.【题目点拨】本题考查导数值的求解问题,关键是能够明确为实数,其导数为零.3、C【解题分析】

由,解得,解得,解得,所围成的平面图形的面积为,则,,故选C.4、A【解题分析】

根据线性回归方程l1和l2都过样本中心点(s,t),判断A说法正确.【题目详解】解:根据线性回归方程l1和l2都过样本中心点(s,t),∴与相交于点,A说法正确.故选:A.【题目点拨】本题考查了线性回归方程过样本中心点的应用问题,是基础题.5、B【解题分析】

先求出的定义域,再利用同增异减以及二次函数的图像判断单调区间即可.【题目详解】令,得f(x)的定义域为,根据复合函数的单调性规律,即求函数在上的减区间,根据二次函数的图象可知为函数的减区间.故选:B【题目点拨】本题主要考查对数函数的定义域以及复合函数的单调区间等,属于基础题型.6、B【解题分析】

求得圆心角的弧度数,用求得扇形半径.【题目详解】依题意为,所以.故选B.【题目点拨】本小题主要考查角度制和弧度制转化,考查扇形的弧长公式的运用,属于基础题.7、B【解题分析】

用反证法证明某命题时,应先假设命题的反面成立,求出要证的命题的否定,即为所求.【题目详解】解:用反证法证明某命题时,应先假设命题的反面成立,及要证的命题的否定成立,而命题:“自然数中恰有一个偶数”的否定为“中至少有两个偶数或都是奇数”,故选:B.【题目点拨】本题主要考查用反证法证明数学命题,求一个命题的否定,属于中档题.8、B【解题分析】

可将中奖的情况分成第一次两球连号和第二次取出的小球与第一次取出的号码相同两种情况,分别计算两种情况的概率,根据和事件概率公式可求得结果.【题目详解】中奖的情况分为:第一次取出两球号码连号和第二次取出两个小球与第一次取出的号码相同两种情况第一次取出两球连号的概率为:第二次取出两个小球与第一次取出号码相同的概率为:中奖的概率为:本题正确选项:【题目点拨】本题考查和事件概率问题的求解,关键是能够根据题意将所求情况进行分类,进而通过古典概型和积事件概率求解方法求出每种情况对应的概率.9、C【解题分析】

先求导,再计算出,再求.【题目详解】由题得,所以.故选:C.【题目点拨】本题主要考查导数的计算,意在考查学生对该知识的掌握水平和基本的计算能力,属基础题.10、A【解题分析】

通过导函数大于0原函数为增函数,导函数小于0原函数为减函数判断函数的增减区间,从而确定函数的极值.【题目详解】由导函数图像可知:导函数在上小于0,于是原函数在上单调递减,在上大于等于0,于是原函数在上单调递增,所以原函数在处取得极小值,无极大值,故选A.【题目点拨】本题主要考查导函数与原函数的联系,极值的相关概念,难度不大.11、B【解题分析】

先计算每人所选的科目各不相同的选法,再减去不选物理的选法得到答案.【题目详解】每人所选的科目各不相同的选法为:物理没有人选的选法为:则不同的选法种数答案选B【题目点拨】本题考查了排列,利用排除法简化了计算.12、B【解题分析】

①充要条件即等价条件,不等价则不充要;②根据正态分布的特征,且μ=3,得到P(X≤0)=P(X≥6)=1-P(X≤6),判断其正确;③根据回归直线的特征,得出其正确;④写出命题p的否定¬p,判定其错误;最后得出结果.【题目详解】对于①,由x>y≥0,可以推出x2>y2,充分性成立,x2对于②,根据题意得P(X≤0)=P(X≥6)=1-P(X≤6)=1-0.72=0.28,所以②正确;对于③,根据回归直线一定会过样本中心点,所以③正确;对于④,命题“∃x∈R,x2所以正确命题有两个,故选B.【题目点拨】该题考查的是有关判断命题的正误的问题,涉及到的知识点有充要条件,正态分布,含有一个量词的命题的否定,回归直线方程的特征,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】

先化简得到数列{an}是一个等比数列和其公比,再求数列{an}的前n项和.【题目详解】因为,所以,因为数列各项是正项,所以,所以数列是等比数列,且其公比为3,所以数列{an}的前n项和为.故答案为:【题目点拨】(1)本题主要考查等比数列性质的判定,考查等比数列的前n项和,意在考查学生对这些知识的掌握水平.(2)解答本题的关键是得到.14、.【解题分析】

计算出二项展开式通项,令的指数为,求出参数的值,再将参数的值代入二项展开式通项可得出项的系数.【题目详解】的展开式通项为,令,得,因此,的展开式中含项的系数为,故答案为:.【题目点拨】本题考查二项式指定项的系数的计算,解题的关键就是利用二项展开式通项进行计算,考查运算求解能力,属于中等题.15、(-∞,6]【解题分析】由题意可设,则当时,;当时,;当时,不等式可化为。在平面直角坐标系中画出函数的图像如图,结合图像可知当,不等式的解集是空集,则实数的取值范围是,应填答案。16、【解题分析】

因为,分别令和,即可求得答案.【题目详解】令.原式化为.令,得,.故答案为:.【题目点拨】本题主要考查了多项式展开式系数和,解题关键是掌握求多项式系数和的解题方法,考查了分析能力和计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)当时,,求导,可知函数在上单调递增,即可求出的值域;(2)根据已知可得,对分类讨论:当时,不等式恒成立;当时,,令,只需即可,求导可得,令,则,即可得,从而可得,从而可得.【题目详解】(1)当时,,所以所以在上单调递增,最小值为,最大值为,所以的值域为.(2)由,得,①当时,不等式恒成立,此时;②当时,,令,则,令,则,所以在上单调递增,所以,所以,所以在上单调递增,所以,所以综上可得实数的取值范围.【题目点拨】本题主要考查导数在研究函数中的应用,同时考查恒成立及分类讨论的思想,属于中档题.18、【解题分析】

将曲线C的参数方程化为普通方程,将直线的极坐标方程化为平面直角坐标方程,联立即可求得直线与曲线C的交点的直角坐标.【题目详解】将直线的极坐标方程化直角坐标系方程为将曲线的参数方程化为普通方程可得:,由得,解得或,又,所以,所以直线与曲线的交点的直角坐标为.【题目点拨】该题考查的是有关直线与曲线交点的平面直角坐标的求解问题,涉及到的知识点有参数方程向普通方程的转化,极坐标方程向平面直角坐标方程的转化,直线与曲线交点坐标的求解,属于简单题目.19、(1)x+y-2=0;(2)当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-alna无极大【解题分析】解:函数f(x)的定义域为(0,+∞),f′(x)=1-.(1)当a=2时,f(x)=x-2lnx,f′(x)=1-(x>0),因而f(1)=1,f′(1)=-1,所以曲线y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.(2)由f′(x)=1-=,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a,又当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0,从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-alna,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-alna,无极大值.20、(1)见证明;(2)90°【解题分析】

(1)利用垂直于所在的平面,从而证得;(2)找到三条两两互相垂直的直线,建立空间直角坐标系,写出点的坐标,再分别求出两个面的法向量,,最后求法向量的夹角的余弦值,进而得到二面角的大小.【题目详解】(1)证明:∵,,∴,∴,∵,,,∴,,∴.(2)如图建立空间直角坐标系,则、、、、,从而,,.设为平面的法向量,则令,所以,设为平面的法向量,则,令,所以,因此,,有,即,故二面角的大小为.【题目点拨】证明线线垂直的一般思路:证明一条直线垂直于另一条直线所在的平面,所以根据题目所给的图形,观察并确定哪一条线垂直于哪一条线所在的平面,是证明的关键.21、(1)或.(2)【解题分析】

(1)利用绝对值不等式可得=2,即可得出的值.(2)不等式在上恒成立等价于在上恒成立,故的解集是的子集,据此可求的取值范围.【题目详解】解:(1)因为,所以.令,得或,解得或.(2)当时,.由,得,即,即.据题意,,则,解得.所以实数的取值范围是.【题目点拨】(1)绝对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论