




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省吉安市高二数学第二学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.区间[0,5]上任意取一个实数x,则满足x[0,1]的概率为A. B. C. D.2.某个班级组织元旦晚会,一共准备了、、、、、六个节目,节目演出顺序第一个节目只能排或,最后一个节目不能排,且、要求相邻出场,则不同的节目顺序共有()种A.72 B.84 C.96 D.1203.设f(x)=+x﹣4,则函数f(x)的零点位于区间()A.(﹣1,0) B.(0,1) C.(1,2) D.(2,3)4.外接圆的半径等于1,其圆心O满足,则向量在方向上的投影等于()A. B. C. D.35.给出下列四个说法:①命题“都有”的否定是“使得”;②已知,命题“若,则”的逆命题是真命题;③是的必要不充分条件;④若为函数的零点,则,其中正确的个数为()A. B. C. D.6.下列说法中,正确说法的个数是()①在用列联表分析两个分类变量与之间的关系时,随机变量的观测值越大,说明“与有关系”的可信度越大②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和0.3③已知两个变量具有线性相关关系,其回归直线方程为,若,,则A.0 B.1 C.2 D.37.方程表示双曲线的一个充分不必要条件是()A.-3<m<0 B.-3<m<2C.-3<m<4 D.-1<m<38.如图,在空间四边形ABCD中,设E,F分别是BC,CD的中点,则+(-)等于A.B.C.D.9.定义在上的偶函数满足,当时,,设函数,则函数与的图像所有交点的横坐标之和为()A.2 B.4 C.6 D.810.已知命题:,,若是真命题,则实数的取值范围为()A. B. C. D.11.点的直角坐标为,则点的极坐标为()A.B.C.D.12.执行下面的程序框图,如果输入的,那么输出的()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为______.14.已知点均在表面积为的球面上,其中平面,,则三棱锥的体积的最大值为__________.15.用一块半径为2分米的半圆形薄铁皮制作一个无盖的圆锥形容器,若衔接部分忽略不计,则该容器的容积为________立方分米.16.设随机变量服从正态分布,如果,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论函数在定义域内的极值点的个数;(2)若函数在处取得极值,且对任意,恒成立,求实数的取值范围;(3)当时,求证:.18.(12分)已知函数f(x)=m(1)当n-m=1时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-3m2x2的两个零点分别为x1,x2(19.(12分)已知与之间的数据如下表:(1)求关于的线性回归方程;(2)完成下面的残差表:并判断(1)中线性回归方程的回归效果是否良好(若,则认为回归效果良好).附:,,,.20.(12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°-sin13°cos17°(2)sin215°+cos215°-sin15°cos15°(3)sin218°+cos212°-sin18°cos12°(4)sin2(-18°)+cos248°-sin2(-18°)cos248°(5)sin2(-25°)+cos255°-sin2(-25°)cos255°Ⅰ试从上述五个式子中选择一个,求出这个常数Ⅱ根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论21.(12分)在极坐标系中,已知圆经过点,且圆心为,求圆的极坐标方程.22.(10分)求曲线,,所围成图形的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
利用几何概型求解即可.【题目详解】由几何概型的概率公式得满足x[0,1]的概率为.故选:A【题目点拨】本题主要考查几何概型的概率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.2、B【解题分析】分析:先排第一个节目,同时把C、D捆绑在一起作为一个元素,按第一个节目排A还是排B分类,如果第一个是B,则第二步排最后一个节目,如果第一个是A,则后面全排列即可.详解:由题意不同节目顺序有.故选B.点睛:本题考查了排列、组合题两种基本方法(1)限制元素(位置)优先法:①元素优先法:先考虑有限制条件的元素,再考虑其他元素;②位置优先法:先考虑有限制条件的位置,再考虑其他位置.(2)相邻问题捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”作全排列,最后再“松绑”——将“捆绑”元素在这些位置上作全排列.3、C【解题分析】
根据零点的判定定理,结合单调性直接将选项的端点代入解析式判正负即可.【题目详解】∵f(x)=2x+x﹣4中,y=2x单增,y=x-4也是增函数,∴f(x)=2x+x﹣4是增函数,又f(1)=﹣1<0,f(2)=2>0,故选C.【题目点拨】本题考查了函数零点存在定理的应用,考查了函数单调性的判断,属于基础题.4、C【解题分析】分析:先根据题意画出图形,由已知条件可知三角形为直角三角形,且,再根据直角三角形射影定理可求得所求投影的值.详解:根据题意画出图像如下图所示,因为,所以为中点,所以是圆的直径,所以.由于,所以三角形为等边三角形,所以,根据直角三角形射影定理得,即.故选C.点睛:本小题主要考查圆的几何性质,考查向量加法的几何意义,考查直角三角形射影定理等知识.属于中档题.5、C【解题分析】
对于①②③④分别依次判断真假可得答案.【题目详解】对于①,命题“都有”的否定是“使得”,故①错误;对于②,命题“若,则”的逆命题为“若,则”正确;对于③,若则,若则或,因此是的充分不必要条件,故③错误;对于④,若为函数,则,即,可令,则,故为增函数,令,显然为减函数,所以方程至多一解,又因为时,所以,则④正确,故选C.【题目点拨】本题主要考查真假命题的判断,难度中等.6、D【解题分析】
①分类变量与的随机变量越大,说明“A与B有关系”的可信度越大②对同取对数,再进行化简,可进行判断③根据线性回归方程,将,代入可求出值【题目详解】对于①,分类变量A与B的随机变量越大,说明“A与B有关系”的可信度越大,正确;
对于②,,两边取对数,可得,
令,可得,.即②正确;
对于③,根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中,,,则.故
③正确因此,本题正确答案是:①②③答案选D【题目点拨】二联表中越大,说明“A与B有关系”的可信度越大;将变量转化成一般线性方程时,可根据系数对应关系对号入座进行求解;线性回归方程的求解可根据,代入求出值7、A【解题分析】由题意知,,则C,D均不正确,而B为充要条件,不合题意,故选A.8、C【解题分析】
由向量的线性运算的法则计算.【题目详解】-=,,∴+(-).故选C.【题目点拨】本题考查空间向量的线性运算,掌握线性运算的法则是解题基础.9、B【解题分析】
根据f(x)的周期和对称性得出函数图象,根据图象和对称轴得出交点个数.【题目详解】∵f(x+1)=﹣f(x),∴f(x+1)=﹣f(x+1)=f(x),∴f(x)的周期为1.∴f(1﹣x)=f(x﹣1)=f(x+1),故f(x)的图象关于直线x=1对称.又g(x)=()|x﹣1|(﹣1<x<3)的图象关于直线x=1对称,作出f(x)的函数图象如图所示:由图象可知两函数图象在(﹣1,3)上共有4个交点,故选B.【题目点拨】本题考查了函数图象变换,考查了函数对称性、周期性的判断及应用,考查了函数与方程的思想及数形结合思想,属于中档题.10、A【解题分析】分析:先写出命题的否定形式,将其转化为恒成立问题,求出的值.详解:命题:,,则为,是真命题,即恒成立,的最大值为1,所以故选A.点睛:含有一个量词的命题的否定命题命题的否定11、A【解题分析】试题分析:,,又点在第一象限,,点的极坐标为.故A正确.考点:1直角坐标与极坐标间的互化.【易错点睛】本题主要考查直角坐标与极坐标间的互化,属容易题.根据公式可将直角坐标与极坐标间互化,当根据求时一定要参考点所在象限,否则容易出现错误.12、D【解题分析】分析:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各个变量值的变化情况,可得结论.详解:模拟程序的运行过程,分析循环中各个变量值的变化情况,可得程序的作用是求和,即,故选D.点睛:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是中档题.算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】如下图,连接DO交BC于点G,设D,E,F重合于S点,正三角形的边长为x(x>0),则.,,三棱锥的体积.设,x>0,则,令,即,得,易知在处取得最大值.∴.点睛:对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.14、【解题分析】分析:先求出球的半径,再求出三棱锥的体积的表达式,最后求函数的最大值.详解:设球的半径为R,所以设AB=x,则,由余弦定理得设底面△ABC的外接圆的半径为r,则所以PA=.所以三棱锥的体积=.当且仅当x=时取等.故答案为点睛:(1)本题主要考查球的体积和几何体的外接球问题,考查基本不等式,意在考查学生对这些基础知识的掌握能力和空间想象能力.(2)三元基本不等式:,当且仅当a=b=c>0时取等.(3)函数的思想是高中数学的重要思想,一般是先求出函数的表达式,再求函数的定义域,再求函数的最值.15、【解题分析】
先由题意得到半圆形的弧长为,设制作的圆锥形容器的底面半径为,求出底面半径与圆锥的高,从而可求出结果.【题目详解】半径为2分米的半圆形的弧长为,设制作的圆锥形容器的底面半径为,则,则;则圆锥形容器的高为,所以容器的容积为.故答案为:【题目点拨】本题主要考查求圆锥的体积,熟记圆锥的体积公式即可,属于常考题型.16、【解题分析】
根据随机变量符合正态分布和正态分布的曲线关于对称,得到一对对称区间的概率之间的关系,即可求得结果【题目详解】随机变量服从正态分布曲线关于直线对称故答案为【题目点拨】本题主要考查的知识点是正态分布,解题的关键是正态分布和正态分布的曲线关于对称,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2);(3)证明见解析.【解题分析】试题分析:(1)由题意可得,分类讨论有:当时,函数没有极值点,当时,函数有一个极值点.(2)由题意可得,原问题等价于恒成立,讨论函数的性质可得实数的取值范围是;(3)原问题等价于,继而证明函数在区间内单调递增即可.试题解析:(1),当时,在上恒成立,函数在单调递减,∴在上没有极值点;当时,得,得,∴在上递减,在上递增,即在处有极小值.∴当时在上没有极值点,当时,在上有一个极值点.(2)∵函数在处取得极值,∴,∴,令,,可得在上递减,在上递增,∴,即.(3)证明:,令,则只要证明在上单调递增,又∵,显然函数在上单调递增.∴,即,∴在上单调递增,即,∴当时,有.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.18、(1)见解析;(2)见解析【解题分析】
(1)先求导数,再根据导函数零点分类讨论,最后根据导函数符号确定单调区间,(2)先求导数得函数g(x)的图像在x=x【题目详解】(1)∵所以当m≤0时,f'(x)=0⇒x=1,所以增区间(0,1)当0<m<1时,f'(x)=0⇒x=1,x=1m>1当m=1时,f'(x)≥0,所以增区间当m>1时,f'(x)=0⇒x=1,x=1m(2)因为g(x)=f(x)-3m所以g'因此函数g(x)的图像在x=x0因为函数g(x)的两个零点分别为x1所以m即(m(所以g令h(t)=-lnt+所以h(t)<h(1)=0,从而g【题目点拨】本题考查利用导数研究函数单调性以及利用导数证明不等式,考查综合分析求解能力,属难题.19、(1);(2)良好.【解题分析】
(1)由题意求出,,代入公式求值,从而得到回归直线方程;(2)根据公式计算并填写残差表;由公式计算相关指数,结合题意得出统计结论.【题目详解】(1)由已知图表可得,,,,则,,故.(2)∵,∴,,,,,则残差表如下表所示,∵,∴,∴该线性回归方程的回归效果良好.【题目点拨】本题考查了线性回归直线方程与相关系数的应用问题,是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股权置换与物联网产业发展合作协议
- 股权转让及公司国际化发展协议书范本
- 数字化城市管理信息系统合作协议
- 公益联合捐活动方案
- 公鸡母鸡活动方案
- 六一儿童舞台活动方案
- 课文阿房宫赋背景及文化内涵解读教案
- 场监管总局全国合同库
- 文化娱乐行业资源统计表
- 综合个人信息与收入证明(6篇)
- 重庆市沙坪坝区2022-2023学年八年级下学期期末英语试题
- 思辨与创新智慧树知到期末考试答案章节答案2024年复旦大学
- 手术室-标准侧卧位摆放
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- 2019版新人教版高中英语必修+选择性必修共7册词汇表汇总(带音标)
- 烟机设备修理工滤棒成型
- 外来医疗器械清洗消毒操作流程课件
- 软件工程-机票预订系统-详细设计-报告
- 网络安全服务实施方案
- 楼长-层长工作职责
- 物理化学实验:实验一 溶解热的测定
评论
0/150
提交评论