版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省汉中市西乡二中高二数学第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义:复数与的乘积为复数的“旋转复数”.设复数对应的点在曲线上,则的“旋转复数”对应的点的轨迹方程为().A. B.C. D.2.已知函数,则()A.是偶函数,且在R上是增函数 B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数 D.是奇函数,且在R上是减函数3.已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.4.下列各对函数中,图象完全相同的是()A.与 B.与C.与 D.与5.将两颗骰子各掷一次,设事件A为“两颗骰子向上点数不同”,事件B为“至少有一颗骰上点数为3点”则()A. B. C. D.6.已知,则的值是A. B. C. D.7.已知函数,若存在,使得有解,则实数的取值范围是()A. B. C. D.8.100件产品中有6件次品,现从中不放回的任取3件产品,在前两次抽到正品的条件下第三次抽到次品的概率为()A. B. C. D.9.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15∘,与灯塔S相距20nmile,随后货轮按北偏西30∘的方向航行30A.20(2+C.20(6+10.给出下列三个命题:命题1:存在奇函数和偶函数,使得函数是偶函数;命题2:存在函数、及区间,使得、在上均是增函数,但在上是减函数;命题3:存在函数、(定义域均为),使得、在处均取到最大值,但在处取到最小值.那么真命题的个数是().A. B. C. D.11.若命题是真命题,则实数a的取值范围是A. B.C. D.12.已知双曲线:与双曲线:,给出下列说法,其中错误的是()A.它们的焦距相等 B.它们的焦点在同一个圆上C.它们的渐近线方程相同 D.它们的离心率相等二、填空题:本题共4小题,每小题5分,共20分。13.“∀x∈R,x2+2x+1>014.重庆市新课程改革要求化学、生物、政治、地理这四门学科为高考选考科目.现在甲、乙、丙三位同学分别从这四门学科中任选两科作为选考科目,则四门学科都有人选的概率为_________.15.若复数是纯虚数,则实数的值为____.16.若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?对服务好评对服务不满意合计对商品好评140对商品不满意10合计200(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.①求随机变量X的分布列;②求X的数学期望和方差.附:K2P(K2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.82818.(12分)已知椭圆.(1)求椭圆C的离心率e;(2)若,斜率为的直线与椭圆交于、两点,且,求的面积.19.(12分)已知矩阵,.(1)求;(2)在平面直角坐标系中,求直线在对应的变换作用下所得直线的方程.20.(12分)某种设备的使用年限(年)和维修费用(万元),有以下的统计数据:34562.5344.5(Ⅰ)画出上表数据的散点图;(Ⅱ)请根据上表提供的数据,求出关于的线性回归方程;(Ⅲ)估计使用年限为10年,维修费用是多少万元?(附:线性回归方程中,其中,).21.(12分)在平面直角坐标系xOy中,曲线M的参数方程为(t为参数,且t>0),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.(1)将曲线M的参数方程化为普通方程,并将曲线C的极坐标方程化为直角坐标方程;(2)求曲线M与曲线C交点的极坐标(ρ≥0,0≤θ<2π).22.(10分)在平面直角坐标系中,已知函数的图像与直线相切,其中是自然对数的底数.(1)求实数的值;(2)设函数在区间内有两个极值点.①求实数的取值范围;②设函数的极大值和极小值的差为,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
设可得:.因为复数与的乘积为复数的“旋转复数,可得,的“旋转复数”对应的点,由坐标变换,即可得的“旋转复数”对应的点的轨迹方程.【题目详解】复数对应的点在曲线上设可得:复数与的乘积为复数的“旋转复数┄①设的“旋转复数”对应的点可得:即┄②将②代入①得:即:故选:C.【题目点拨】本题考查复数的运算,考查复平面和考查坐标变换,掌握复数与复平面内的点一一对应是解本题的关键.2、D【解题分析】
根据题意,由函数的解析式可得f(﹣x)=2x﹣()x=﹣f(x),则函数f(x)为奇函数,由指数函数的性质可得y=()x在R上为减函数,y=2x在R上为增函数,则函数f(x)=()x﹣2x在R上为减函数,据此分析可得答案.【题目详解】根据题意,f(x)=()x﹣2x,有f(﹣x)=2x﹣()x=﹣f(x),则函数f(x)为奇函数,又由y=()x在R上为减函数,y=2x在R上为增函数,则函数f(x)=()x﹣2x在R上为减函数,故选:D.【题目点拨】本题考查函数的奇偶性与单调性的判断,关键是掌握函数奇偶性、单调性的判断方法,属于基础题.3、B【解题分析】由题.又对应复平面的点在第四象限,可知,解得.故本题答案选.4、C【解题分析】
先判断两个函数的定义域是否是同一个集合,再判断两个函数的解析式是否可以化为一致.【题目详解】解:对于A、∵的定义域为,的定义域为.两个函数的对应法则不相同,∴不是同一个函数.对于B、∵的定义域,的定义域均为.∴两个函数不是同一个函数.对于C、∵的定义域为且,的定义域为且.对应法则相同,∴两个函数是同一个函数.对于D、的定义域是,的定义域是,定义域不相同,∴不是同一个函数.故选C.【题目点拨】本题考查两个函数解析式是否表示同一个函数,需要两个条件:①两个函数的定义域是同一个集合;②两个函数的解析式可以化为一致.这两个条件缺一不可,必须同时满足.5、D【解题分析】
用组合数公式计算事件A和事件AB包含的基本事件个数,代入条件概率公式计算.【题目详解】解:两颗骰子各掷一次包含的基本事件的个数是1.事件A包含的基本事件个数有,则.事件AB包含的基本事件个数为10,则.所以在事件A发生的条件下,事件B发生的概率为:,故选:D.【题目点拨】本题考查条件概率,属于基础题.6、D【解题分析】,,又,故选D.7、B【解题分析】
先将化为,再令,则问题转化为:,然后通过导数求得的最大值代入可得.【题目详解】若存在,使得有解,即存在,使得,令,则问题转化为:,因为,当时,;当时,,所以函数在上递增,在上递减,所以,所以.故选B.【题目点拨】本题考查了不等式能成立问题,属中档题.8、A【解题分析】
由已知可知件产品中有件次品,件正品,设“前两次抽到正品”为事件,“第三次抽到次品”为事件,求出和,即可求得答案.【题目详解】由已知可知件产品中有件次品,件正品,设“前两次抽到正品”为事件,“第三次抽到次品”为事件;则∴故选:A.【题目点拨】本题是一道关于条件概率计算的题目,关键是掌握条件概率的计算公式,考查了分析能力和计算能力,属于中档题.9、B【解题分析】由题意可知:SM=20,∠NMS=45°∴SM与正东方向的夹角为75°,MN与正东方向的夹角为60°,∴SNM=105°,∠MSN=30°∆MNS中利用正弦定理可得MNMN=∴货轮的速度v=故选B10、D【解题分析】对于命题1,取,,满足题意;对于命题2,取,,满足题意;对于命题3,取,,满足题意;即题中所给的三个命题均为真命题,真命题的个数是.本题选择D选项.11、B【解题分析】因为命题是真命题,即不等式对恒成立,即恒成立,当a+2=0时,不符合题意,故有,即,解得,则实数a的取值范围是.故选:B.12、D【解题分析】由题知.则两双曲线的焦距相等且,焦点都在圆的圆上,其实为圆与坐标轴交点.渐近线方程都为,由于实轴长度不同故离心率不同.故本题答案选,二、填空题:本题共4小题,每小题5分,共20分。13、∃x0【解题分析】
直接利用全称命题的否定得解.【题目详解】“∀x∈R,x2+2x+1>0”的否定是:“∃【题目点拨】本题主要考查了全称命题的否定,属于基础题.14、【解题分析】
选科门数分三种:第一种只选二门,第二种选3门,第三种是四门都选.可以通过计算前两种的选法或概率得出第三种的选法或概率【题目详解】每人任选两门有种,只有两门学科有人选共有种,有三门学科有人选共有种,(注:减是减去只有两门被选中的情形),所以故答案为:.【题目点拨】本题考查古典概型,考查排列组合的应用,解题关键是求出满足要求的选科数方法数.15、-【解题分析】
由纯虚数的定义,可以得到一个关于的等式和不等式,最后求出的值.【题目详解】因为复数是纯虚数,所以有,.故答案为.【题目点拨】本题考查了纯虚数的定义,解不等式和方程是解题的关键.16、【解题分析】
利用二倍角公式直接计算得到答案.【题目详解】.【题目点拨】本题考查了三角恒等变换,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)①详见解析②E(X)=2110【解题分析】
(1)补充列联表,根据公式计算卡方值,进行判断;(2)(ⅰ)每次购物时,对商品和服务都好评的概率为710,且X的取值可以是0,1,2,3,x符合二项分布,按照二项分布的公式进行计算即可得到相应的概率值;(ⅱ)按照二项分布的期望和方差公式计算即可【题目详解】(1)由题意可得关于商品和服务评价的2×2列联表:对服务好评对服务不满意合计对商品好评14040180对商品不满意101020合计15050200则K2由于7.407<7.879,则不可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关.(2)(ⅰ)每次购物时,对商品和服务都好评的概率为710且X的取值可以是0,1,2,3,则P(X=0)=(310P(X=2)=C32故X的分布列为X0123P27189441343(ⅱ)由于X~B(3,710),则E(X)=3×710【题目点拨】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确.18、(1);(2).【解题分析】
(1)将椭圆的方程化为标准方程,得出、与的等量关系,可得出椭圆的离心率的值;(2)设直线的方程为,设点、,将的值代入得出椭圆的方程,将直线的方程与椭圆联立,消去,列出韦达定理,利用弦长公式结合条件可求出,利用点到直线的距离公式计算出原点到直线的距离,然后利用三角形的面积公式可得出的面积.【题目详解】(1)椭圆,椭圆长半轴长为,短半轴长为,;(2)设斜率为的直线的方程为,且、,,椭圆的方程为,由,.消去得,又有.,解得:满足,直线的方程为.故到直线的距离,.【题目点拨】本题考查椭圆离心率的计算,考查椭圆中的弦长与三角形面积的计算,一般将直线的方程与椭圆的方程联立,利用韦达定理与弦长公式进行计算求解,难点在于计算量大,属于中等题.19、(1);(2).【解题分析】
分析:(1)直接根据逆矩阵公式计算即可(2)由,即解得,即.详解:(1)由题知,所以,根据逆矩阵公式,得.(2)设由上的任意一点在作用下得到上对应点.由,即解得,因为,所以,即.即直线的方程为.点睛:(1)逆矩阵计算公式是解第一问关键,要会掌握其运算公式(2)一直线在对应的变换作用下所得直线的方程计算不难,不要算错一般都可以解决.20、(1)详见解析;(2);(3)当时,万元.【解题分析】(1)直接将四个点在平面直角坐标系中描出;(2)先计算,,再借助计算出,求出回归方程;(3)依据线性回归方程求出当时,的值:【试题分析】(1)按数学归纳法证明命题的步骤:先验证时成立,再假设当时,不等式成立,分析推证时也成立:(1)(2);所求的线性回归方程:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编版四年级语文上册第6课《夜间飞行的秘密》精美课件
- 小尾寒羊营养需要量-地方标准草案报批稿
- 二零二四年度航空器材采购租赁合同3篇
- 我的真理观-马克思公开课
- 环状外阴炎病因介绍
- 【大学课件】 企业集团财务战略与管理控制体系
- 《专利英语翻译》课件
- (麦当劳餐饮运营管理资料)更新商业-麦当劳洗手间检查表
- (高考英语作文炼句)第6篇译文老师笔记
- 热力管道施工组织设计
- 23J916-1 住宅排气道(一)
- 热控专业施工工艺标准手册
- 2024年黑龙江牡丹江林口县招聘社区工作者23人历年高频500题难、易错点模拟试题附带答案详解
- 第二单元分数的混合运算(单元测试)-2024-2025学年六年级上册数学北师大版
- 中学生心理压力调查报告
- 7.2 共建美好集体 课件-2024-2025学年道德与法治七年级上册 统编版2024
- 小学一年级劳动教育全册教案
- 2023年山东省济南市中考数学真题卷(含答案与解析)
- 物业服务水电维修方案
- 2024年一致行动人协议书范本正规范本
- 2024年高素质农民职业技能大赛(农业经理人)赛项考试题库-上(单选题)
评论
0/150
提交评论