版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省芜湖市普通高中2024届数学高二第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线my2-x2=1(m∈R)与椭圆+x2=1有相同的焦点,则该双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±3x2.下列命题中:①“x>y”是“x②已知随机变量X服从正态分布N3, ③线性回归直线方程y=bx+④命题“∃x∈R,x2+x+1>0其中正确的个数是()A.1 B.2 C.3 D.43.一个盒子里装有大小、形状、质地相同的12个球,其中黄球5个,蓝球4个,绿球3个.现从盒子中随机取出两个球,记事件为“取出的两个球颜色不同”,事件为“取出一个黄球,一个绿球”,则A. B.C. D.4.用反证法证明“方程至多有两个解”的假设中,正确的是()A.至少有两个解 B.有且只有两个解C.至少有三个解 D.至多有一个解5.从甲、乙、丙、丁四人中选取两人参加某项活动,则甲、乙两人有且仅有一人入选的概率为()A. B. C. D.6.已知、是双曲线的两焦点,以线段为边作正三角形,若边的中点在双曲线上,则双曲线的离心率是()A. B. C. D.7.设函数,()A.3 B.6 C.9 D.128.已知实数成等差数列,且曲线取得极大值的点坐标为,则等于()A.-1 B.0 C.1 D.29.已知定义在上的函数的导函数为,满足,且,则不等式的解集为()A. B. C. D.10.设,,集合()A. B. C. D.11.已知.则()A. B. C. D.12.已知,,,,且满足,,,对于,,,四个数的判断,给出下列四个命题:①至少有一个数大于1;②至多有一个数大于1;③至少有一个数小于0;④至多有一个数小于0.其中真命题的是()A.①③ B.②④ C.①④ D.②③二、填空题:本题共4小题,每小题5分,共20分。13.若复数,则的共轭复数的虚部为_____14.若x,y满足x+1≤y≤2x,则2y−x的最小值是__________.15.已知变数满足约束条件目标函数仅在点处取得最大值,则的取值范围为_____________.16.i是虚数单位,则复数的虚部为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线,圆.以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)若直线的极坐标方程为,设与的交点为、,求.18.(12分)已知函数.若曲线和曲线都过点,且在点处有相同的切线.(Ⅰ)求的值;(Ⅱ)若时,,求的取值范围.19.(12分)2018年6月14日,第二十一届世界杯尼球赛在俄罗斯拉开了帷幕,某大学在二年级作了问卷调查,从该校二年级学生中抽取了人进行调查,其中女生中对足球运动有兴趣的占,而男生有人表示对足球运动没有兴趣.(1)完成列联表,并回答能否有的把握认为“对足球是否有兴趣与性别有关”?有兴趣没有兴趣合计男女合计(2)若将频率视为概率,现再从该校二年级全体学生中,采用随机抽样的方法每饮抽取名学生,抽取次,记被抽取的名学生中对足球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.附:20.(12分)2018年俄罗斯世界杯激战正酣,某校工会对全校教职工在世界杯期间每天收看比赛的时间作了一次调查,得到如下频数分布表:收看时间(单位:小时)14282012(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“球迷”,否则定义为“非球迷”,请根据频数分布表补全列联表:男女合计球迷40非球迷合计并判断能否有90%的把握认为该校教职工是否为“球迷”与“性别”有关;(2)在全校“球迷”中按性别分层抽样抽取6名,再从这6名“球迷”中选取2名世界杯知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0252.0722.7063.8415.024.21.(12分)某羽绒服卖场为了解气温对营业额的影响,随机记录了该店3月份上旬中某5天的日营业额y(单元:千元)与该地当日最低气温x(单位:∘C)的数据,如表:x258911y1210887(1)求y关于x的回归直线方程;(2)设该地3月份的日最低气温,其中μ近似为样本平均数,近似为样本方差,求参考公式:,计算参考值:..22.(10分)某校高二年级成立了垃圾分类宣传志愿者小组,有7名男同学,3名女同学,在这10名学生中,1班和2班各有两名同学,3班至8班各有一名同学,现从这10名同学中随机选取3名同学,利用节假日到街道进行垃圾分类宣传活动(每位同学被选到的可能性相同)(1)求选出的3名同学是来自不同班级的概率;(2)设为选出的3名同学中女同学的人数,求随机变量的分布列及数学期望
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】试题分析:由于的焦点为.双曲线可化为.由题意可得.依题意得.所以双曲线方程为.所以渐近线方程为.故选A.考点:1.椭圆的性质.2.双曲线的性质.3.双曲线的标准方程.2、B【解题分析】
①充要条件即等价条件,不等价则不充要;②根据正态分布的特征,且μ=3,得到P(X≤0)=P(X≥6)=1-P(X≤6),判断其正确;③根据回归直线的特征,得出其正确;④写出命题p的否定¬p,判定其错误;最后得出结果.【题目详解】对于①,由x>y≥0,可以推出x2>y2,充分性成立,x2对于②,根据题意得P(X≤0)=P(X≥6)=1-P(X≤6)=1-0.72=0.28,所以②正确;对于③,根据回归直线一定会过样本中心点,所以③正确;对于④,命题“∃x∈R,x2所以正确命题有两个,故选B.【题目点拨】该题考查的是有关判断命题的正误的问题,涉及到的知识点有充要条件,正态分布,含有一个量词的命题的否定,回归直线方程的特征,属于简单题目.3、D【解题分析】分析:先求取出的两个球颜色不同得概率,再求取出一个黄球,一个绿球得概率可,最后根据条件概率公式求结果.详解:因为所以,选D.点睛:本题考查条件概率计算公式,考查基本求解能力.4、C【解题分析】分析:把要证的结论进行否定,得到要证的结论的反面,即为所求.详解:由于用反证法证明数学命题时,应先假设命题的否定成立,
命题:“方程ax2+bx+c=0(a≠0)至多有两个解”的否定是:“至少有三个解”,
故选C.点睛:本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.5、B【解题分析】
算出总的个数和满足所求事件的个数即可【题目详解】从甲、乙、丙、丁四人中选取两人参加某项活动,总共有种情况其中满足甲乙两人仅有一人入选的有种情况所以甲、乙两人有且仅有一人入选的概率为故选:B【题目点拨】本题考查了古典概型的求法,组合问题的简单应用,属于基础题6、C【解题分析】
设为边的中点,由双曲线的定义可得,因为正三角形的边长为,所以有,进而解得答案。【题目详解】因为边的中点在双曲线上,设中点为,则,,因为正三角形的边长为,所以有,整理可得故选C【题目点拨】本题考查双曲线的定义及离心率,解题的关键是由题意求出的关系式,属于一般题。7、C【解题分析】.故选C.8、B【解题分析】由题意得,,解得由于是等差数列,所以,选B.9、A【解题分析】分析:先构造函数,再根据函数单调性解不等式.详解:令,因为,所以因此解集为,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等10、C【解题分析】分析:由题意首先求得集合B,然后进行交集运算即可求得最终结果.详解:求解二次不等式可得,结合交集的定义可知:.本题选择C选项.点睛:本题主要考查集合的表示方法,交集的定义及其运算等知识,意在考查学生的转化能力和计算求解能力.11、C【解题分析】
由二项式定理及利用赋值法即令和,两式相加可得,结合最高次系数的值即可得结果.【题目详解】中,取,得,取,得,所以,即,又,则,故选C.【题目点拨】本题主要考查了二项式定理及利用赋值法求二项式展开式的系数,属于中档题.12、A【解题分析】
根据对,,,取特殊值,可得②,④不对,以及使用反证法,可得结果.【题目详解】当,时,满足条件,故②,④为假命题;假设,由,,得,则,由,所以矛盾,故①为真命题,同理③为真命题.故选:A【题目点拨】本题主要考查反证法,正所谓“正难则反”,熟练掌握反证法的证明方法,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、7【解题分析】
利用复数乘法运算化简为的形式,由此求得共轭复数,进而求得共轭复数的虚部.【题目详解】,,故虚部为.【题目点拨】本小题主要考查复数乘法运算,考查共轭复数的概念,考查复数虚部的知识.14、3【解题分析】
分析:作可行域,根据目标函数与可行域关系,确定最小值取法.详解:作可行域,如图,平移直线,由图可知直线过点A(1,2)时,取最小值3.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.15、【解题分析】
试题分析:由题意知满足条件的线性区域如图所示:,点,而目标函数仅在点处取得最大值,所以考点:线性规划、最值问题.16、-1【解题分析】
分子分母同时乘以,进行分母实数化.【题目详解】,其虚部为-1【题目点拨】分母实数化是分子分母同时乘以分母的共轭复数,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)由可得出曲线的极坐标方程;(2)解法一:求出直线的普通方程,利用点到直线的距离公式计算出圆的圆心到直线的距离,再利用勾股定理计算出;解法二:设点、的极坐标分别为、,将圆的方程化为极坐标方程,并将直线的方程与圆的极坐标方程联立,得出关于的二次方程,列出韦达定理,可得出,从而计算出.【题目详解】(1)由直线,可得的极坐标方程为;(2)解法一:由直线的极坐标方程为,得直线的直角坐标方程为,即.圆的圆心坐标为,半径为,则圆心到直线的距离,;解法二:圆的普通方程为,化为极坐标方程得,设点、的极坐标分别为、,将直线的极坐标方程代入圆的极坐标方程得,,由韦达定理得,,因此,.【题目点拨】本题考查普通方程与极坐标方程的互化,同时也考查了直线与圆相交所得弦长的计算,可以计算出圆心到直线的距离,利用勾股定理来进行计算,也可以利用极坐标方程,利用极径之差来进行计算,考查化归与转化数学思想的应用,属于中等题.18、(I);(II).【解题分析】试题分析:(1)先求导,根据题意,由导数的几何意义可知,从而可求得的值.(2)由(1)知,,令,即证时.先将函数求导,讨论导数的正负得函数的增减区间,根据函数的单调性求其最值.使其最小值大于等于0即可.试题解析:(1)由已知得,而,(4分)(2)由(1)知,,设函数,.由题设可得,即,令得,..(6分)①若,则,∴当时,,当时,,即F(x)在单调递减,在单调递增,故在取最小值,而.∴当时,,即恒成立..(8分)②若,则,∴当时,,∴在单调递增,而,∴当时,,即恒成立,③若,则,∴当时,不可能恒成立..(10分)综上所述,的取值范围为.(12分)考点:用导数研究函数的性质.19、(1)有;(2).【解题分析】分析:(1)根据已知数据完成2×2列联表,计算,判断有的把握认为“对足球有兴趣与性别有关”.(2)先求得从大二学生中抽取一名学生对足球有兴趣的概率是,再利用二项分布求的分布列和数学期望.详解:(1)根据已知数据得到如下列联表:有兴趣没有兴趣合计男女合计根据列联表中的数据,得到,所以有的把握认为“对足球有兴趣与性别有关”.(2)由列联表中数据可知,对足球有兴趣的学生频率是,将频率视为概率,即从大二学生中抽取一名学生对足球有兴趣的概率是,有题意知,,,,从而的分布列为.点睛:(1)本题主要考查独立性检验,考查随机变量的分布列和期望,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)若~则20、(1)有(2)见解析【解题分析】分析:(1)根据题中数据填写列联表,由此计算观测值,对照临界值得出结论;(2)由题意知抽取的6名“体育达人”中有4名男职工,2名女职工,所以的可能取值为0,1,2,求出相对应的概率值,即可求得答案.详解:(1)由题意得下表:的观测值为.所以有的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度差旅服务与智能出行平台合作协议4篇
- 专业化国内物流服务运输协议范本(2024版)一
- 2025年度建筑工程测量监理合同协议4篇
- 2024新三板挂牌协议及证券事务顾问服务合同3篇
- 2024蓝皮合同下载
- 2025年度柴油运输企业环保设施建设合同4篇
- 2025年度环保环保设备销售与售后服务合同4篇
- 2025年度柴油生产技术改造项目合同范本4篇
- 个人房产买卖合同书稿版B版
- 2024投资担保借款保证合同范本
- 产品共同研发合作协议范本5篇
- 风水学的基础知识培训
- 2024年6月高考地理真题完全解读(安徽省)
- 吸入疗法在呼吸康复应用中的中国专家共识2022版
- 1-35kV电缆技术参数表
- 信息科技课程标准测(2022版)考试题库及答案
- 施工组织设计方案针对性、完整性
- 2002版干部履历表(贵州省)
- DL∕T 1909-2018 -48V电力通信直流电源系统技术规范
- 2024年服装制版师(高级)职业鉴定考试复习题库(含答案)
- 门诊部缩短就诊等候时间PDCA案例-课件
评论
0/150
提交评论