2024届黑龙江省齐齐哈尔市甘南一中数学高二下期末联考模拟试题含解析_第1页
2024届黑龙江省齐齐哈尔市甘南一中数学高二下期末联考模拟试题含解析_第2页
2024届黑龙江省齐齐哈尔市甘南一中数学高二下期末联考模拟试题含解析_第3页
2024届黑龙江省齐齐哈尔市甘南一中数学高二下期末联考模拟试题含解析_第4页
2024届黑龙江省齐齐哈尔市甘南一中数学高二下期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省齐齐哈尔市甘南一中数学高二下期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有()A.24种 B.28种 C.32种 D.36种2.已知点P是曲线C:x=3+cosθ,y=3+sinθ,(θA.[10,13+1] B.[3.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种 B.60种C.120种 D.210种4.若执行如图所示的程序框图,输出的值为,则输入的值是()A. B. C. D.5.某校组织《最强大脑》赛,最终、两队讲入决赛,两队各由3名选手组成,每局两队各派一名洗手,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时队的得分高于队的得分的概率为()A. B. C. D.6.设全集U={|﹣1<x<5},集合A={1,3},则集合∁UA的子集的个数是()A.16 B.8 C.7 D.47.过抛物线的焦点F的直线与抛物线交于A、B两点,且,为坐标原点,则的面积与的面积之比为A. B. C. D.28.将函数的图象向左平移个单位后得到函数的图象如图所示,则函数的解析式是()A.() B.()C.() D.()9.函数在其定义域内可导,的图象如图所示,则导函数的图象为()A. B.C. D.10.已知随机变量X的分布列:02若,,则()A. B. C. D.11.z是z的共轭复数,若z+z=2,(z-zA.1+i B.-1-i C.-1+i D.1-i12.已知函数为内的奇函数,且当时,,记,则间的大小关系是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在极坐标系中,曲线和相交于点A,B,则线段AB的中点E到极点的距离是______.14.函数f(x)由下表定义:x25314f(x)12345若a0=5,an+1=f(an),15.已知的展开式中项的系数是-35,则________.16.若复数(为虚数单位),则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定义在上的函数.求函数的单调减区间;Ⅱ若关于的方程有两个不同的解,求实数的取值范围.18.(12分)已知函数,且的解集为.(1)求的值;(2)若,且,求证:.19.(12分)网购是现在比较流行的一种购物方式,现随机调查50名个人收入不同的消费者是否喜欢网购,调杳结果表明:在喜欢网购的25人中有19人是低收入的人,另外6人是高收入的人,在不喜欢网购的25人中有8人是低收入的人,另外17人是高收入的人.(1)试根据以上数据完成列联表,并用独立性检验的思想,指出有多大把握认为是否喜欢网购与个人收入高低有关系;喜欢网购不喜欢网购总计低收入的人高收入的人总计(2)将5名喜欢网购的消费者编号为1、2、3、4、5,将5名不喜欢网购的消费者编号也记作1、2、3、4、5,从这两组人中各任选一人讲行交流,求被选出的2人的编号之和为2的倍数的概率.参考公式:参考数据:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.(Ⅰ)求出甲、乙所付租车费用相同的概率;(Ⅱ)求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望21.(12分)已知,,曲线在点处的切线平分圆C:的周长.(1)求a的值;(2)讨论函数的图象与直线的交点个数.22.(10分)已知函数,曲线在处的切线方程为.(1)求实数的值;(2)求函数在的最值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】试题分析:第一类:有一个人分到一本小说和一本诗集,这种情况下的分法有:先将一本小说和一本诗集分到一个人手上,有种分法,将剩余的本小说,本诗集分给剰余个同学,有种分法,那共有种;第二类:有一个人分到两本诗集,这种情况下的分法有:先两本诗集分到一个人手上,有种情况,将剩余的本小说分给剩余个人,只有一种分法,那共有:种,第三类:有一个人分到两本小说,这种情况的分法有:先将两本小说分到一个人手上,有种情况,再将剩余的两本诗集和一本小说分给剩余的个人,有种分法,那共有:种,综上所述:总共有:种分法,故选B.考点:1、分布计数乘法原理;2、分类计数加法原理.【方法点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.2、D【解题分析】

将曲线C的参数方程化为普通方程,可知曲线C是圆x-32+y-3【题目详解】曲线C表示半圆:x-32+所以PQ≤取A2,3,AQ=2+12【题目点拨】本题考查参数方程与普通方程之间的转化,同时也考查了点与圆的位置关系,在处理点与圆的位置关系的问题时,充分利用数形结合的思想,能简化计算,考查计算能力与分析问题的能力,属于中等题。3、C【解题分析】

可用分步计数原理去做,分成两步,第一步安排甲学校共有A61种方法,第二步安排另两所学校有A52【题目详解】先安排甲学校的参观时间,因为甲学校连续参观两天,可以是周一周二,可以是周二周三,可以是周三周四,可以是周四周五,可以是周五周六,可以是周六周日,所以共有A61然后在剩下的5天中任选两天有序地安排其余两校参观,安排方法有A5按照分步计数乘法原理可知共有A61【题目点拨】本题主要考查分步计数原理在排列组合中的应用,注意分步与分类的区别,对于有限制条件的元素要先安排,再安排其他的元素,本题是一个易错题.4、C【解题分析】

将所有的算法循环步骤列举出来,得出不满足条件,满足条件,可得出的取值范围,从而可得出正确的选项.【题目详解】,;不满足,执行第二次循环,,;不满足,执行第三次循环,,;不满足,执行第四次循环,,;不满足,执行第五次循环,,;满足,跳出循环体,输出的值为,所以,的取值范围是.因此,输入的的值为,故选C.【题目点拨】本题考查循环结构框图的条件的求法,解题时要将算法的每一步列举出来,结合算法循环求出输入值的取值范围,考查分析问题和推理能力,属于中等题.5、C【解题分析】

先将队得分高于队得分的情况列举出来,然后进行概率计算.【题目详解】比赛结束时队的得分高于队的得分可分为以下种情况:第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;则对应概率为:,故选:C.【题目点拨】本题考查独立事件的概率计算,难度较易.求解相应事件的概率,如果事件不符合特殊事件形式,可从“分类加法”的角度去看事件,然后再将结果相加.6、B【解题分析】因为,,所以,集合的子集的个数是,故选B.7、D【解题分析】

设点位于第一象限,点,并设直线的方程为,将该直线方程与抛物线方程联立,利用韦达定理得出,由抛物线的定义得出点的坐标,可得出点的纵坐标的值,最后得出的面积与的面积之比为的值.【题目详解】设点位于第一象限,点,设直线的方程为,将该直线方程与抛物线方程联立,得,,由抛物线的定义得,得,,,,可得出,,故选:D.【题目点拨】本题考查抛物线的定义、直线与抛物线的综合问题,考查韦达定理在直线与抛物线综合问题中的应用,解题的关键在于利用抛物线的定义以及韦达定理求点的坐标,并将三角形的面积比转化为高之比来处理,考查运算求解能力,属于中等题。8、A【解题分析】设,由的图像可知,函数的周期为,所以,将代入得,所以,向右平移后得到.9、D【解题分析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.10、B【解题分析】

由,可得,由随机变量分布列的期望、方差公式,联立即得解.【题目详解】由题意,且,又联立可得:故选:B【题目点拨】本题考查了随机变量分布列的期望和方差,考查了学生概念理解,数学运算的能力,属于中档题.11、D【解题分析】试题分析:设z=a+bi,z=a-bi,依题意有2a=2,-2b=2,故考点:复数概念及运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.12、D【解题分析】

根据奇函数解得,设,求导计算单调性和奇偶性,根据性质判断大小得到答案.【题目详解】根据题意得,令.则为内的偶函数,当时,,所以在内单调递减又,故,选D.【题目点拨】本题考查了函数的奇偶性单调性,比较大小,构造函数是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】

将曲线方程化为直角坐标系下的方程,联立方程组,由此求得中点的坐标,再求出其到极点的距离.【题目详解】将曲线方程化为直角坐标方程可得将曲线方程化为直角坐标方程可得,联立两方程可得故可得中点坐标为,则其到坐标原点的距离即为所求,即.故答案为:2.【题目点拨】本题考查将极坐标方程化为普通方程,属基础题.14、1【解题分析】

由表格可知:f(5)=2,f(2)=1,f(1)=4,f(4)=5,由于a0=5,an+1=f(an),n=0【题目详解】由表格可知:f(5)=2,f(2)=1,f(1)=4,f(4)=5.又a0=5,an+1=f(a∴a1=f(a0)=f(5)=2,a2=f(a∴a∴a【题目点拨】本题考查了函数的表示方法、数列的周期性,考查了归纳推理以及利用递推公式求数列中的项,属于中档题.利用递推关系求数列中的项常见思路为:(1)项的序号较小时,逐步递推求出即可;(2)项的序数较大时,考虑证明数列是等差、等比数列,或者是周期数列.15、1【解题分析】

试题分析:∵,∴.又展开式中的系数是-35,可得,∴m=1.∴.在①,令x=1,m=1时,由①可得,即考点:二项式系数的性质16、【解题分析】

把复数z=1-2i及它的共轭复数代入,将其化简为a+bi(a,b∈R)的形式,即可.【题目详解】复数(为虚数单位),则,,故答案为:6−2i.【题目点拨】本题考查复数的基本概念,复数基本运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、时,的单调减区间为;当时,函数的单调减区间为;当时,的单调减区间为;Ⅱ.【解题分析】

分三种情况讨论,根据一次函数的单调性、二次函数图象的开口方向,可得不同情况下函数的单调减区间;Ⅱ若关于的方程有两个不同的解,等价于有两个不同的解,令利用导数研究函数的单调性,结合极限思想,分析函数的单调性与最值,根据数形结合思想,可得实数的取值范围.【题目详解】当时,,函数的单调减区间为;当时,的图象开口朝上,且以直线为对称轴,函数的单调减区间为.当时,的图象开口朝下,且以直线为对称轴,函数的单调减区间为;Ⅱ若关于x的方程有两个不同的解,即有两个不同的解,令则令,则,解得,当时,,函数为增函数,当时,,函数为减函数,故当时,函数取最大值1,又由,故时,的图象有两个交点,有两个不同的解,即时,关于x的方程有两个不同的解.【题目点拨】本题考查的知识点是二次函数的图象和性质,利用导数研究函数的单调性、极值以及函数的零点,属于难题.函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.18、(1);(2)详见解析.【解题分析】分析:(1)由条件可得的解集为,即的解集为,可得;(2)根据,展开后利用基本不等式可得结论.详解:(1)因为,所以等价于,由有解,得,且其解集为.又的解集为,故.(2)由(1)知,又,7分∴(或展开运用基本不等式)∴.点睛:本题主要考查利用基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).19、(1)填表见解析,有99.5%的把握认为是否喜欢网购与个人收入高低有关系;(2)【解题分析】

(1)表格填空,然后根据公式计算的值,再根据表格判断相应关系;(2)利用古典概型的概率计算方法求解概率即可.【题目详解】解:(1)列联表如下,喜欢网购不喜欢网购总计低收入的人19827高收入的人61723总计252550;;故有99.5%的把握认为是否喜欢网购与个人收入高低有关系;(2)由题意,共有种情况,和为2的有1种,和为4的有3种,和为6的有5种,和为8的有3种,和为10的有1种,故被选出的2人的编号之和为2的倍数概率为.【题目点拨】独立性检验计算有多大把握的步骤:(1)根据列联表计算出的值;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论