2024届河南省安阳市第三十五中学等几校高二数学第二学期期末考试试题含解析_第1页
2024届河南省安阳市第三十五中学等几校高二数学第二学期期末考试试题含解析_第2页
2024届河南省安阳市第三十五中学等几校高二数学第二学期期末考试试题含解析_第3页
2024届河南省安阳市第三十五中学等几校高二数学第二学期期末考试试题含解析_第4页
2024届河南省安阳市第三十五中学等几校高二数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省安阳市第三十五中学等几校高二数学第二学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.要将甲、乙、丙、丁名同学分到三个班级中,要求每个班级至少分到一人,则甲被分到班的概率为()A. B. C. D.2.数列满足,则数列的前20项的和为()A.100 B.-100 C.-110 D.1103.若函数f(x)=xex,x≥0x2+3x,x<0A.[0,2) B.[0,2] C.[-3,0]4.已知是抛物线上一点,则到抛物线焦点的距离是()A.2 B.3 C.4 D.65.函数有极值的充要条件是()A. B. C. D.6.阅读下面的程序框图,运行相应的程序,若输入的值为24,则输出的值为()A.0 B.1 C.2 D.37.若X是离散型随机变量,P(X=x1)=23,P(X=x2)=1A.53 B.73 C.38.将函数的图象沿轴向右平移个单位后,得到一个偶函数的图象,则的取值不可能是()A. B. C. D.9.已知集合则A.[2,3] B.(-2,3] C.[1,2) D.10.设,则的定义域为().A.(-4,0)∪(0,4)B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4)11.设函数(为自然对数的底数),若曲线上存在点使得,则的取值范围是A. B. C. D.12.已知、是双曲线的两焦点,以线段为边作正三角形,若边的中点在双曲线上,则双曲线的离心率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知棱长为1的正四面体,的中点为D,动点E在线段上,则直线与平面所成角的取值范围为____________;14.从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),⋯,概括出第n个式子为_______.15.已知、满足,则的最小值为________.16.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知球的内接正四棱锥,,.(1)求正四棱锥的体积;(2)求、两点间的球面距离.18.(12分)某大学学生会为了调查了解该校大学生参与校健身房运动的情况,随机选取了100位大学生进行调查,调查结果统计如下:参与不参与总计男大学生30女大学生50总计45100(1)根据已知数据,把表格数据填写完整;(2)能否在犯错误的概率不超过0.005的前提下认为参与校健身房运动与性别有关?请说明理由.附:,其中.0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82819.(12分)一条隧道的横断面由抛物线弧及一个矩形的三边围成,尺寸如图所示单位:,一辆卡车空车时能通过此隧道,现载一集装箱,箱宽3m,车与箱共高,此车是否能通过隧道?并说明理由.20.(12分)已知函数,.①时,求的单调区间;②若时,函数的图象总在函数的图象的上方,求实数的取值范围.21.(12分)求二项式的展开式中项系数最大的项的系数.22.(10分)如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

根据题意,先将四人分成三组,再分别分给三个班级即可求得总安排方法;若甲被安排到A班,则分甲单独一人安排到A班和甲与另外一人一起安排到A班两种情况讨论,即可确定甲被安排到A班的所有情况,即可求解.【题目详解】将甲、乙、丙、丁名同学分到三个班级中,要求每个班级至少分到一人,则将甲、乙、丙、丁名同学分成三组,人数分别为1,1,2;则共有种方法,分配给三个班级的所有方法有种;甲被分到A班,有两种情况:一,甲单独一人分到A班,则剩余两个班级分别为1人和2人,共有种;二,甲和另外一人分到A班,则剩余两个班级各1人,共有种;综上可知,甲被分到班的概率为,故选:B.【题目点拨】本题考查了排列组合问题的综合应用,分组时注意重复情况的出现,属于中档题.2、B【解题分析】

数列{an}满足,可得a2k﹣1+a2k=﹣(2k﹣1).即可得出.【题目详解】∵数列{an}满足,∴a2k﹣1+a2k=﹣(2k﹣1).则数列{an}的前20项的和=﹣(1+3+……+19)1.故选:B.【题目点拨】本题考查了数列递推关系、数列分组求和方法,考查了推理能力与计算能力,属于中档题.3、A【解题分析】

先作y=f(x)的图象与直线y=-x+2的图象在同一直角坐标系中的位置图象,再结合函数与方程的综合应用即可得解.【题目详解】设h(x)=xe则h(x)=1-x则h(x)在(0,1)为增函数,在(1,+∞)为减函数,则y=f(x)的图象与直线y=-x+2的图象在同一直角坐标系中的位置如图所示,由图可知,当g(x)有三个零点,则a的取值范围为:0⩽a<2,故选:A.【题目点拨】本题考查了作图能力及函数与方程的综合应用,属于中档题.4、B【解题分析】分析:直接利用抛物线的定义可得:点到抛物线焦点的距离.详解:由抛物线方程可得抛物线中,则利用抛物线的定义可得点到抛物线焦点的距离.故选B.点睛:本题考查了抛物线的定义标准方程及其性质,考查了推理能力与计算能力,属于基础题.5、C【解题分析】因为,所以,即,应选答案C.6、C【解题分析】

根据给定的程序框图,逐次循环计算,即可求解,得到答案.【题目详解】由题意,第一循环:,能被3整除,不成立,第二循环:,不能被3整除,不成立,第三循环:,不能被3整除,成立,终止循环,输出,故选C.【题目点拨】本题主要考查了程序框图的识别与应用,其中解答中根据条件进行模拟循环计算是解答的关键,着重考查了运算与求解能力,属于基础题.7、C【解题分析】

本题考查期望与方差的公式,利用期望及方差的公式,建立方程,即可求得结论.【题目详解】∵E(X)=∴2∴x1=1x∴x故选C.考点:离散型随机变量的期望方差.8、C【解题分析】试题分析:将其向右平移个单位后得到:,若为偶函数必有:,解得:,当时,D正确,时,B正确,当时,A正确,综上,C错误.考点:1.函数的图像变换;2.函数的奇偶性.9、B【解题分析】有由题意可得:,则(-2,3].本题选择B选项.10、B【解题分析】试题分析:要使函数有意义,则解得,有意义,须确保两个式子都要有意义,则,故选.考点:1.函数的定义域;2.简单不等式的解法.11、D【解题分析】

法一:考查四个选项,发现有两个特殊值区分开了四个选项,0出现在了A,B两个选项的范围中,出现在了B,C两个选项的范围中,故通过验证参数为0与时是否符合题意判断出正确选项。法二:根据题意可将问题转化为在上有解,分离参数得到,,利用导数研究的值域,即可得到参数的范围。【题目详解】法一:由题意可得,,而由可知,当时,=为增函数,∴时,.∴不存在使成立,故A,B错;当时,=,当时,只有时才有意义,而,故C错.故选D.法二:显然,函数是增函数,,由题意可得,,而由可知,于是,问题转化为在上有解.由,得,分离变量,得,因为,,所以,函数在上是增函数,于是有,即,应选D.【题目点拨】本题是一个函数综合题,方法一的切入点是观察四个选项中与不同,结合排除法以及函数性质判断出正确选项,方法二是把问题转化为函数的最值问题,利用导数进行研究,属于中档题。12、C【解题分析】

设为边的中点,由双曲线的定义可得,因为正三角形的边长为,所以有,进而解得答案。【题目详解】因为边的中点在双曲线上,设中点为,则,,因为正三角形的边长为,所以有,整理可得故选C【题目点拨】本题考查双曲线的定义及离心率,解题的关键是由题意求出的关系式,属于一般题。二、填空题:本题共4小题,每小题5分,共20分。13、;【解题分析】

当与重合时,直线与平面所成角为0最小,当从向移动时,直线与平面所成角逐渐增大,到达点时角最大.【题目详解】如图,是在底面上的射影,是在底面上的射影,由于是中点,则是中点,正四面体棱长为1,则,,,,,∴,,∴..∴所求角的范围是.故答案为.【题目点拨】本题考查直线与平面所成的角,解题时首先要作出直线与平面所成的角,同时要证明所作角就是要求的角,最后再计算,即一作二证三计算.14、1-4+9-16+...【解题分析】

分析:根据前面的式子找规律写出第n个式子即可.详解:由题得1-4+9-16+点睛:(1)本题主要考查不完全归纳,考查学生对不完全归纳的掌握水平和观察分析能力.(2)不完全归纳得到的结论,最好要检验,发现错误及时纠正.15、4【解题分析】

此题考查线性规划问题,只需认真作出不等式表示的平面区域,把目标函数转化为截距式求值即可.【题目详解】作出不等式表示的平面区域,如图所示:令,则,作出直线l:,平移直线l,由图可得,当直线经过点B时,直线在y轴上的截距最大,此时取得最小值,得B(2,2),代入故填4.【题目点拨】本题主要考查学生的作图能力及分析能力,难度较小.16、5【解题分析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m的函数关系,最后根据二次函数性质确定最值取法.详解:设,由得因为A,B在椭圆上,所以,与对应相减得,当且仅当时取最大值.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)设平面,利用勾股定理可以求出,最后利用棱锥的体积公式求出正四棱锥的体积;(2)利用勾股定理,先求出球的半径,再用余弦定理可以求出的大小,最后利用球面上两点间球面距离定义求出、两点间的球面距离.【题目详解】(1)设平面,如下图所示:由四棱锥是正四棱锥,所以是底面的中心,因为是正方形,,所以,在中,,所以正四棱锥的体积为:;(2)由球和正四棱锥的对称性可知:球心在高上,设球的半径为,在中,,在中,,所以、两点间的球面距离为.【题目点拨】本题考查了四棱锥的体积计算,考查了球面两点间的球面距离计算,考查了数学运算能力.18、(1)见解析(2)能在犯错误的概率不超过0.005的前提下认为参与校健身房运动与性别有关【解题分析】

(1)根据表格内的数据计算即可.(2)将表格中的数据代入公式,计算即可求出k的取值,根据参考值得出结论.【题目详解】解:(1)参与不参与总计男大学生302050女大学生153550总计4555100(2)因为的观测值,所以能在犯错误的概率不超过0.005的前提下认为参与校健身房运动与性别有关.【题目点拨】本题考查列联表和独立性检验的应用,属于基础题.19、见解析【解题分析】

建立直角坐标系,得到A、B的坐标,设抛物线方程为,并求得其方程,依题意,集装箱上表面距抛物线型隧道拱顶,从而设抛物线上点D的坐标为,计算即可判断.【题目详解】以抛物线的上顶点为原点,建立坐标系,则,.设抛物线方程为,将B点坐标代入,得,.抛物线方程为.车与箱共高集装箱上表面距抛物线型隧道拱顶.设抛物线上点D的坐标为,则,,,故此车不能通过隧道.【题目点拨】本题考查抛物线的简单性质,求得抛物线方程是关键,考查分析推理与运算能力,属于中档题.20、(1)的单增区间为;单减区间为.(2)实数a的取值范围【解题分析】

(1),得的单增区间为;单减区间为.(2).所以21、或【解题分析】

根据题意,求出的展开式的通项,求出其系数,设第项的系数最大,则有,解可得的值,代入通项中计算可得答案.【题目详解】解:根据题意,的展开式的通项为,其系数为,设第项的系数最大,则有,即解可得:,故当或时,展开式中项系数最大,则有,;即系数最大的项的系数为或.【题目点拨】本题考查二项式定理的应用,注意项的系数与二项式系数的区别,属于基础题.22、(1)见解析;(2).【解题分析】

(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论