版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省淮南市2023-2024学年数学九上期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.由若干个相同的小正方体搭成的一个几何体的俯视图和左视图如图所示,则搭成这个几何体的小正方体的个数最多有()A.5个 B.6个 C.7个 D.8个2.“黄金分割”是一条举世公认的美学定律.例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版.要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置()A.① B.② C.③ D.④3.有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A.1 B.1 C. D.4.已知二次函数的图象如图所示,分析下列四个结论:①abc<0;②b2-4ac>0;③;④a+b+c<0.其中正确的结论有()A.1个 B.2个 C.3个 D.4个5.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1056.下列说法中正确的是(
)A.弦是直径 B.弧是半圆 C.半圆是圆中最长的弧 D.直径是圆中最长的弦7.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A.12米 B.4米 C.5米 D.6米8.下列事件中,是随机事件的是()A.任意画两个圆,这两个圆是等圆 B.⊙O的半径为5,OP=3,点P在⊙O外C.直径所对的圆周角为直角 D.不在同一条直线上的三个点确定一个圆9.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.10.如图,线段AB是⊙O的直径,弦,,则等于().A. B. C. D.二、填空题(每小题3分,共24分)11.如图,BA,BC是⊙O的两条弦,以点B为圆心任意长为半径画弧,分别交BA,BC于点M,N:分别以点M,N为圆心,以大于为半径画弧,两弧交于点P,连接BP并延长交于点D;连接OD,OC.若,则等于__________.12.中,若,,,则的面积为________.13.一个周长确定的扇形,要使它的面积最大,扇形的圆心角应为______度.14.二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为______.15.如图,在△ABC中,∠C=90°,AC=3,若cosA=,则BC的长为________.16.如果两个相似三角形的对应角平分线之比为2:5,较小三角形面积为8平方米,那么较大三角形的面积为_____________平方米.17.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.18.将抛物线y=﹣2x2+1向左平移三个单位,再向下平移两个单位得到抛物线________;三、解答题(共66分)19.(10分)其中A代表湘江源,B代表百叠岭,C代表塔下寺,D代表三分石.(1)请你设计一种较好的方式(统计图),表示以上数据;(2)同学们最喜欢去的地点是哪里?20.(6分)如图,AB为⊙O的直径,弦AC的长为8cm.(1)尺规作图:过圆心O作弦AC的垂线DE,交弦AC于点D,交优弧于点E;(保留作图痕迹,不要求写作法);(2)若DE的长为8cm,求直径AB的长.21.(6分)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(1)试判断上述方程根的情况.(2)已知△ABC的两边AB、AC的长是关于上述方程的两个实数根,BC的长为5,当k为何值时,△ABC是等腰三角形.22.(8分)(2016湖南省永州市)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?23.(8分)画出如图所示的几何体的主视图、左视图和俯视图.24.(8分)如图,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P在BC下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.25.(10分)如图,在⊿OAB中,∠OAB=90°.OA=AB=6.将⊿OAB绕点O逆时针方向旋转90°得到⊿OA1B1(1)线段A1B1的长是∠AOA1的度数是(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.26.(10分)求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据所给出的图形可知这个几何体共有3层,3列,先看第一层正方体可能的最多个数,再看第二、三层正方体的可能的最多个数,相加即可.【详解】根据主视图和左视图可得:这个几何体有3层,3列,最底层最多有2×2=4个正方体,第二层有2个正方体,第三层有2个正方体则搭成这个几何体的小正方体的个数最多是4+2+2=8个;故选:D.【点睛】此题考查了有三视图判断几何体,关键是根据主视图和左视图确定组合几何体的层数及列数.2、B【解析】黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618,观察图中的位置可知应该使小狗置于画面中②的位置,故选B.3、B【分析】利用折叠的性质,即可求得BD的长与图3中AB的长,又由相似三角形的对应边成比例,即可求得BF的长,则由CF=BC﹣BF即可求得答案.【详解】解:如图2,根据题意得:BD=AB﹣AD=2.5﹣1.5=1,如图3,AB=AD﹣BD=1.5﹣1=0.5,∵BC∥DE,∴△ABF∽△ADE,∴,即,∴BF=0.5,∴CF=BC﹣BF=1.5﹣0.5=1.故选B.【点睛】此题考查了折叠的性质与相似三角形的判定与性质.题目难度不大,注意数形结合思想的应用.4、B【解析】①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;
②由抛物线与x轴有两个交点判断即可;③由,a<1,得到b>2a,所以2a-b<1;④由当x=1时y<1,可得出a+b+c<1.【详解】解:①∵二次函数图象开口向下,对称轴在y轴左侧,与y轴交于正半轴,
∴a<1,,c>1,∴b<1,
∴abc>1,结论①错误;
②∵二次函数图象与x轴有两个交点,
∴b2-4ac>1,结论②正确;③∵,a<1,
∴b>2a,
∴2a-b<1,结论③错误;
④∵当x=1时,y<1;
∴a+b+c<1,结论④正确.
故选:B.【点睛】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠1)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.5、C【解析】试题分析:28000=1.1×1.故选C.考点:科学记数法—表示较大的数.6、D【解析】试题分析:根据弦、直径、弧、半圆的概念一一判断即可.【解答】解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选D.【考点】圆的认识.7、A【分析】试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故选A.【详解】请在此输入详解!8、A【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.【详解】A.任意画两个圆,这两个圆是等圆,属于随机事件,符合题意;B.⊙O的半径为5,OP=3,点P在⊙O外,属于不可能事件,不合题意;C.直径所对的圆周角为直角,属于必然事件,不合题意;D.不在同一条直线上的三个点确定一个圆,属于必然事件,不合题意;故选:A.【点睛】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、D【分析】根据中心对称图形和轴对称图形的定义即可得解.【详解】A、不是中心对称图形,也不是轴对称图形,此项错误B、是中心对称图形,也是轴对称图形,此项错误C、不是中心对称图形,是轴对称图形,此项错误D、是中心对称图形,但不是轴对称图形,此项正确故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、C【分析】先根据垂径定理得到,再根据圆周角定理得∠BOD=2∠CAB=40°,然后利用邻补角的定义计算∠AOD的度数.【详解】∵CD⊥AB,∴,∴∠BOD=2∠CAB=2×20°=40°,∴∠AOD=180°-∠BOD=180°-40°=140°.故答案为C.【点睛】本题考查圆中的角度计算,熟练掌握垂径定理和圆周角定理是关键.二、填空题(每小题3分,共24分)11、【分析】根据作图描述可知BD平分∠ABC,然后利用同弧所对的圆周角是圆心角的一半可求出∠CBD的度数,由∠ABD=∠CBD即可得出答案.【详解】根据作图描述可知BD平分∠ABC,∴∠ABD=∠CBD∵∠COD=70°∴∠BCD=∠COD=35°∴∠ABD=35°故答案为:35°.【点睛】本题考查了角平分线的作法,圆周角定理,判断出BD为角平分线,熟练掌握同弧所对的圆周角是圆心角的一半是解题的关键.12、【分析】过点A作BC边上的高交BC的延长线于点D,在中,利用三角函数求出AD长,再根据三角形面积公式求解即可.【详解】解:如图,作于点D,则,在中,所以的面积为故答案为:.【点睛】本题主要考查了三角函数,灵活添加辅助线利用三角函数求出三角形的高是解题的关键.13、【分析】设扇形的弧长,然后,建立关系式,结合二次函数的图象与性质求解最值即可.【详解】设扇形面积为S,半径为r,圆心角为α,则扇形弧长为a-2r,所以S=(a-2r)r=-(r-)2+.故当r=时,扇形面积最大为.∴∴此时,扇形的弧长为2r,∴,∴故答案为:.【点睛】本题重点考查了扇形的面积公式、弧长公式、二次函数的最值等知识,属于基础题.14、x<−1或x>5.【分析】先利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(-1,0),然后写出抛物线在x轴下方所对应的自变量的范围即可.【详解】抛物线的对称轴为直线x=2,而抛物线与x轴的一个交点坐标为(5,0),所以抛物线与x轴的另一个交点坐标为(−1,0),所以不等式−x2+bx+c<0的解集为x<−1或x>5.故答案为x<−1或x>5.考点:二次函数图象的性质15、1【分析】由题意先根据∠C=90°,AC=3,cos∠A=,得到AB的长,再根据勾股定理,即可得到BC的长.【详解】解:∵△ABC中,∠C=90°,AC=3,cos∠A=,∴,∴AB=5,∴BC==1.故此空填1.【点睛】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA,以此并结合勾股定理分析求解.16、1【分析】设较大三角形的面积为x平方米.根据相似三角形面积的比等于相似比的平方列出方程,然后求解即可.【详解】设较大三角形的面积为x平方米.∵两个相似三角形的对应角平分线之比为2:5,∴两个相似三角形的相似比是2:5,∴两个相似三角形的面积比是4:25,∴8:x=4:25,解得:x=1.故答案为:1.【点睛】本题考查了相似三角形的性质,相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.17、20%【解析】分析:本题需先设出这个增长率是x,再根据已知条件找出等量关系列出方程,求出x的值,即可得出答案.解答:解:设这个增长率是x,根据题意得:2000×(1+x)2=2880解得:x1=20%,x2=-220%(舍去)故答案为20%.18、【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键.三、解答题(共66分)19、(1)条形图,见解析;(2)A湘江源头【分析】(1)根据统计表中的数据绘制条形统计图即可;(2)根据统计表中的信息即可得到结论.【详解】(1)利用条形图表示:(2)由统计表知同学们最喜欢的地点是:A湘江源头.【点睛】本题考查了统计的问题,掌握统计的定义以及应用、条形图的绘制方法是解题的关键.20、(1)见解析;(2)10cm.【分析】(1)以点A,点C为圆心,大于AC为半径画弧,两弧的交点和点O的连线交弦AC于点D,交优弧于点E;(2)由垂径定理可得AD=CD=4cm,由勾股定理可求OA的长,即可求解.【详解】(1)如图所示:(2)∵DE⊥AC,∴AD=CD=4cm,∵AO2=DO2+AD2,∴AO2=(DE﹣AO)2+16,∴AO=5,∴AB=2AO=10cm.【点睛】本题考查了圆的有关知识,勾股定理,灵活运用勾股定理求AO的长是本题的关键.21、(1)方程有两个不相等的实数根;(2)3或1.【分析】(1)利用一元二次方程根的判别式判断即可;(2)用k表示出方程的两个根,分AB=BC和AC=BC两种情况,分别求出k值即可.【详解】(1)∵方程x2﹣(2k+3)x+k2+3k+2=0,∴△=b2﹣1ac=(2k+3)2﹣1(k2+3k+2)=1k2+12k+9﹣1k2﹣12k﹣8=1>0,∴方程有两个不相等的实数根;(2)x2﹣(2k+3)x+k2+3k+2=0,x1=k+1,x2=k+2,当AB=k+1,AC=k+2,BC=5,由(1)知AB≠AC,故有两种情况:(i)当AC=BC=5时,k+2=5,即k=3;(ii)当AB=BC=5时,k+1=5,即k=1.故当k为3或1时,△ABC是等腰三角形.【点睛】本题考查了一元二次方程的根的判别式与根的关系,△>0时,方程有两个不相等的实数根;△=0时,方程有两个相等的实数根;△<0时,方程没有实数根.熟练掌握一元二次方程的根的判别式与根的关系是解题关键.22、(1)10%;(2)1.【解析】试题分析:(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)2”,列出方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”表示出总利润,再根据总利润不少于3210元,即可的出关于m的一元一次不等式,解不等式即可得出结论.试题解析:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.2.∴m≥1.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品1件.考点:一元二次方程的应用;一元一次不等式的应用.23、见解析.【分析】分别从正面、左面、上面看得到的图形即可.看到的棱用实线表示,实际存在但是被挡住看不见的棱用虚线表示.【详解】【点睛】本题考查了三视图的作图.24、(1)y=x2﹣x﹣3;(2)P(3,﹣);(3)点P(2,﹣3),最大值为12【分析】(1)用交点式设出抛物线的表达式,化为一般形式,根据系数之间的对应关系即可求解;(2)根据(1)中的表达式求出点C(0,-3),函数对称轴为:x=1,则点D(2,-3),点E(4,-3),当△PDE是以DE为底边的等腰三角形时,点P在线段DE的中垂线上,据此即可求解;
(3)求出直线BC的表达式,设出P、H点的坐标,根据四边形ACPB的面积=S△ABC+S△BHP+S△CHP进行计算,化为顶点式即可求解.【详解】(1)抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣2a=﹣,解得:a=,故抛物线的表达式为:y=x2﹣x﹣3;(2)当x=0时,y=-3,故点C的坐标为(0,﹣3),函数对称轴为:x==1,∵CE∥AB∴点D(2,﹣3),点E(4,﹣3),则DE的中垂线为:x==3,当x=3时,y=x2﹣x﹣3=﹣,故点P(3,﹣);(3)设直线BC的解析式为y=kx+b,把B(4,0)C(0,﹣3)代入得:解得:∴直线BC的表达式为:y=x﹣3,故点P作y轴的平行线交BC于点H,设点P(x,x2﹣x﹣3),则点H(x,x﹣3);四边形ACPB的面积=S△ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育心理学通关提分题库(考点梳理)
- 2023年滋补类药品资金申请报告
- 2023年高性能铁氧体一次磁粉资金需求报告
- 安全培训总结及效果评价
- 2024年新鲜度保障冷藏运输协议范例
- 2024年担保协议法律效力分析
- 地方政府招商中介服务协议样本
- 2024年软件系统定制协议模板大全
- 彩钢建筑安装工程协议2024年详规
- 2024年协议附加条款定制模板
- NB-T+10488-2021水电工程砂石加工系统设计规范
- 责任保险行业发展趋势及前景展望分析报告
- 办公室租赁协议样本
- 医学美容技术专业《美容礼仪》课程标准
- 国能辽宁北票 200MW 风力发电项目地质灾害危险性评估报告
- 国家开放大学专科《法理学》(第三版教材)形成性考核试题及答案
- 计量基础知识考核试题及参考答案
- 智慧医联体建设项目可行性研究报告
- 混合痔中医护理 方案
- 2024年中考英语题型复习:阅读理解(含练习题及答案)
- 2024-2030年中国农业机械产业发展格局与需求趋势预测研究报告
评论
0/150
提交评论