版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省沧州市普通高中高二数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数的图象与的图象都关于直线对称,则与的值分别为()A. B. C. D.2.设命题,则为()A. B.C. D.3.已知函数fxA.fx的最小正周期为π,最大值为B.fx的最小正周期为π,最大值为C.fx的最小正周期为2πD.fx的最小正周期为2π4.已知复数Z满足:,则()A. B. C. D.5.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()A.b>c>a B.c>b>a C.a>b>c D.b>a>c6.已知随机变量服从正态分布,,则()A. B. C. D.7.由与直线围成的图形的面积是()A. B. C. D.98.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)9.已知向量,,且,若实数满足不等式,则实数的取值范围为()A. B. C. D.10.若,则下列不等式中成立的是()A. B. C. D.11.已知平面向量,的夹角为,且,,则()A. B. C. D.12.直线y=a分别与直线y=2x+2,曲线y=x+lnx交于点A、A.3 B.2 C.324二、填空题:本题共4小题,每小题5分,共20分。13.已知复数z=(i是虚数单位),则|z|=________.14.加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为__________.15.曲线在点处的切线方程为_______.16.(N*)展开式中不含的项的系数和为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在的展开式中,求:(1)第3项的二项式系数及系数;(2)含的项.18.(12分)如图所示的几何,底为菱形,,.平面底面,,,.(1)证明:平面平面;(2)求二面角的正弦值.19.(12分)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到数据如表所示(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):常喝不常喝合计肥胖28不肥胖18合计30(Ⅰ)请将上面的列联表补充完整;(Ⅱ)是否有99%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.0.0500.0103.8416.635参考数据:附:20.(12分)在中,角所对的边分别为且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.21.(12分)将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为,第二次出的点数为,且已知关于、的方程组.(1)求此方程组有解的概率;(2)若记此方程组的解为,求且的概率.22.(10分)如图所示,球的表面积为,球心为空间直角坐标系的原点,且球分别与轴的正交半轴交于三点,已知球面上一点.(1)求两点在球上的球面距离;(2)过点作平面的垂线,垂足,求的坐标,并计算四面体的体积;(3)求平面与平面所成锐二面角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:由题意得,结合即可求出,同理可得的值.详解:函数的图象与的图象都关于直线对称,和()解得和,和时,;时,.故选:D.点睛:本题主要考查了三角函数的性质应用,属基础题.2、D【解题分析】分析:根据全称命题的否定解答.详解:由全称命题的否定得为:,故答案为D.点睛:(1)本题主要考查全称命题的否定,意在考查学生对这些知识的掌握水平.(2)全称命题:,全称命题的否定():.3、B【解题分析】
首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为fx=【题目详解】根据题意有fx所以函数fx的最小正周期为T=且最大值为fxmax=【题目点拨】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.4、B【解题分析】
由复数的四则运算法则求出复数,由复数模的计算公式即可得到答案.【题目详解】因为,则,所以,故选B.【题目点拨】本题考查复数的化简以及复数模的计算公式,属于基础题.5、A【解题分析】
利用指数函数、对数函数的单调性直接求解.【题目详解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小关系为b>c>a.故选:A.【题目点拨】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.6、A【解题分析】由正态分布的特征得=,选A.7、C【解题分析】分析:先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=﹣x2与直线y=2x﹣3的面积,即可求得结论.详解:由y=﹣x2与直线y=2x﹣3联立,解得y=﹣x2与直线y=2x﹣3的交点为(﹣3,﹣9)和(1,﹣1)因此,y=﹣x2与直线y=2x﹣3围成的图形的面积是S==(﹣x3﹣x2+3x)=.故答案为:C.点睛:(1)本题主要考查利用定积分的几何意义和定积分求面积,意在考查学生对这些知识的掌握水平.(2)从几何上看,如果在区间上函数连续,且函数的图像有一部分在轴上方,有一部分在轴下方,那么定积分表示轴上方的曲边梯形的面积减去下方的曲边梯形的面积.8、B【解题分析】
根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【题目详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【题目点拨】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。9、A【解题分析】分析:根据,得到,直线的截距为,作出不等式表示的平面区域,通过平推法确定的取值范围.详解:向量,,且,,整理得,转换为直线满足不等式的平面区域如图所示.画直线,平推直线,确定点A、B分别取得截距的最小值和最大值.易得,分别将点A、B坐标代入,得,故选A.点睛:本题主要考查两向量垂直关系的应用,以及简单的线性规划问题,着重考查了分析问题和解答问题的能力和数形结合思想的应用.目标函数型线性规划问题解题步骤:(1)确定可行区域(2)将转化为,求z的值,可看做求直线,在y轴上截距的最值.(3)将平移,观察截距最大(小)值对应的位置,联立方程组求点坐标.(4)将该点坐标代入目标函数,计算Z.10、A【解题分析】
对于A,用不等式的性质可以论证,对于B,C,D,列举反例,可以判断.【题目详解】∵a<0,∴|a|=﹣a,∵a<b<0,∴﹣a>﹣b>0,∴|a|>﹣b,故结论A成立;取a=﹣2,b=﹣1,则∵,∴B不正确;,∴,∴C不正确;,,∴,∴D不正确.故选:A.【题目点拨】本题考查不等式的性质,解题的关键是利用不等式的性质,对于不正确结论,列举反例.11、C【解题分析】分析:根据向量的运算,化简,由向量的数量积定义即可求得模长.详解:平面向量数量积,所以所以选C点睛:本题考查了向量的数量积及其模长的求法,关键是理解向量运算的原理,是基础题.12、D【解题分析】试题分析:设A(x1,a),B(x2,a),则2(x1+1)=x2+lnx2考点:导数的应用.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:因为,所以所以本题也可利用复数模的性质进行求解,即考点:复数的模14、0.5【解题分析】分析:利用条件概率求解.详解:设第一道工序出废品为事件则,第二道工序出废品为事件,则根据题意可得,故在第一道工序出废品的条件下,第二道工序又出废品的概率即答案为0.5点睛:本题考查条件概率的求法,属基础题.15、.【解题分析】
对函数求导得,把代入得,由点斜式方程得切线方程为.【题目详解】因为,所以,又切点为,所以在点处的切线方程为.【题目点拨】本题考查运用导数的几何意义,求曲线在某点处的切线方程.16、1【解题分析】
先将问题转化为二项展开式的各项系数和问题,再利用赋值法求出各项系数和.【题目详解】要求(n∈N∗)展开式中不含y的项,只需令y=0,(N*)展开式中不含的项的系数和即为展开式的系数和,令x=1得展开式的各项系数和为;故答案为:1.【题目点拨】因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)第3项的系数为24=240.(2)含x2的项为第2项,且T2=-192x2.【解题分析】试题分析:(1)根据二项展开式的通项,即可求解第项的二项式系数及系数;(2)由二项展开式的痛项,可得当时,即可得到含的系数.试题解析:(1)第3项的二项式系数为C=15,又T3=C(2)42=24·Cx,所以第3项的系数为24C=240.(2)Tk+1=C(2)6-kk=(-1)k26-kCx3-k,令3-k=2,得k=1.所以含x2的项为第2项,且T2=-192x2.18、(1)证明见解析;(2)【解题分析】
(1)推导出,从而平面,进而.再由,得平面,推导出,从而平面,由此能证明平面平面;
(2)取中点G,从而平面,以、、所在直线分别为x轴、y轴、z轴的正方向建立如图所示的空间直角坐标系,利用向量法能求出二面角的余弦值.【题目详解】解:(1)由题意可知,又因为平面底面,所以平面,从而.因为,所以平面,易得,,,所以,故.又,所以平面.又平面,所以平面平面;(2)取中点G,,相交于点O,连结,易证平面,故、、两两垂直,以O为坐标原点,以、、所在直线分别为x轴、y轴、z轴的正方向建立如图所示的空间直角坐标系,则,,,,所以,,.由(1)可得平面的法向量为.设平面的法向量为,则即令,得,所以.从而,故二面角的正弦值为.【题目点拨】本题考查面面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19、(1)见解析;(2)有99%的把握认为肥胖与常喝碳酸饮料有关.【解题分析】分析:(1)先根据条件计算常喝碳酸饮料肥胖的学生人数,再根据表格关系填表,(2)根据卡方公式求,再与参考数据比较作判断.详解:(1)设常喝碳酸饮料肥胖的学生有人,.常喝不常喝合计肥胖628不胖41822合计102030(2)由已知数据可求得:因此有99%的把握认为肥胖与常喝碳酸饮料有关.点睛:本题考查卡方公式以及列联表,考查基本求解能力.20、(1);(2).【解题分析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件,(3)注意锐角三角形的各角都是锐角.(4)把边的关系转化成角,对于求边的取值范围很有帮助试题解析:(1)由,得,所以,则,由,。(2)由(1)得,即,又为锐角三角形,故从而.由,所以所以,所以因为所以即考点:余弦定理的变形及化归思想21、(1);(2).【解题分析】
(1)先根据方程组有解得关系,再确定取法种数,最后根据古典概型概率公式求结果;(2)先求方程组解,再根据解的情况得关系,进而确定取法种数,最后根据古典概型概率公式求结果.【题目详解】(1)因为方程组有解,所以而有这三种情况,所以所求概率为;(2)因为且,所以因此即有种情况,所以所求概率为;【题目点拨】本题考查古典概型概率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公室文员的辞职报告模板五篇
- 医院的实习报告范文集锦5篇
- 物流专业实习报告集锦15篇
- 云计算项目概述
- 2023-2024学年四川省巴中市高二上学期期末考试语文试卷
- 2024年行政争议解决代理合同3篇
- 幼儿给客人倒水课程设计
- 椅子拉伸课程设计
- 城市更新项目可持续性与长期发展
- 城市更新风险评估与应对策略
- 2023-2024学年重庆市两江新区四上数学期末质量检测试题含答案
- 2023年澳大利亚的森林和林业概况报告
- M7.5浆砌块石挡土墙砌筑施工方法
- 2022年度黑龙江省重点新产品名单
- 2023北京朝阳区初三上期末考物理试卷及答案
- 挖掘机司机安全培训试题和答案
- 工程电力之DCS系统受电及系统复原调试措施
- 学前心理学 期末考试题库
- 小学数学人教三年级上册万以内的加法和减法解决问题
- 我国成人血脂异常防治指南解读
- 信息光学知到章节答案智慧树2023年苏州大学
评论
0/150
提交评论