2024届江西省桑海中学等三校数学高二下期末统考试题含解析_第1页
2024届江西省桑海中学等三校数学高二下期末统考试题含解析_第2页
2024届江西省桑海中学等三校数学高二下期末统考试题含解析_第3页
2024届江西省桑海中学等三校数学高二下期末统考试题含解析_第4页
2024届江西省桑海中学等三校数学高二下期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省桑海中学等三校数学高二下期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数至少存在一个零点,则的取值范围为()A. B. C. D.2.复数在复平面内对应的点在A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数在区间上的最大值是()A. B. C. D.4.已知函数,若,,,则,,的大小关系是()A. B. C. D.5.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为圆周,则该不规则几何体的体积为()A. B. C. D.6.“-1≤x≤1”是“xA.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.在用反证法证明“已知,且,则中至少有一个大于1”时,假设应为()A.中至多有一个大于1 B.全都小于1C.中至少有两个大于1 D.均不大于18.如果点位于第三象限,那么角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程确定出来x=2,类似地不难得到=()A. B.C. D.10.已知命题p:“∀x∈[1,e],a>lnx”,命题q:“∃x∈R,x2-4x+a=0””若“A.(1,4] B.(0,1] C.[-1,1] D.(4,+∞)11.若,满足条件,则的最小值为()A. B. C. D.12.已知命题p:若复数,则“”是“”的充要条件;命题q:若函数可导,则“”是“x0是函数的极值点”的充要条件.则下列命题为真命题的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合2,3,,,集合A、B是集合U的子集,若,则称“集合A紧跟集合B”,那么任取集合U的两个子集A、B,“集合A紧跟集合B”的概率为______.14.如图,已知正方体,,E为棱的中点,则与平面所成角为_____________.(结果用反三角表示)15.若表示的动点的轨迹是椭圆,则的取值范围是________.16.我国南北朝时期数学家祖瞘,提出了著名的祖暅原理:“幂势既同,则积不容异”,其中“幂”是截面积,“势”是几何体的高,该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围城一个封闭的区域,将区域沿轴的正方向平移个单位长度,得到几何体(图一),现有一个与之等高的圆柱(图二),其底面积与区域的面积相等,则此圆柱的体积为_______.图一图二三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)讨论的单调性;(2)设是的两个零点,证明:.18.(12分)互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式.某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究.采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折.已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.19.(12分)已知函数在处取得极大值为.(1)求的值;(2)求曲线在处的切线方程.20.(12分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.21.(12分)已知点P(2,2),圆,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求点M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)将,的方程化为普通方程,并说明它们分别表示什么曲线?(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点在上,点为的中点,求点到直线距离的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

将条件转化为有解,然后利用导数求出右边函数的值域即可.【题目详解】因为函数至少存在一个零点所以有解即有解令,则因为,且由图象可知,所以所以在上单调递减,令得当时,单调递增当时,单调递减所以且当时所以的取值范围为函数的值域,即故选:A【题目点拨】1.本题主要考查函数与方程、导数与函数的单调性及简单复合函数的导数,属于中档题.2.若方程有根,则的范围即为函数的值域2、B【解题分析】因,故复数对应的点在第二象限,应选答案B.3、B【解题分析】

函数,,令,解得x.利用三角函数的单调性及其导数即可得出函数的单调性.【题目详解】函数,,令,解得.∴函数在内单调递增,在内单调递减.∴时函数取得极大值即最大值..故选B.【题目点拨】本题考查了三角函数的单调性,考查利用导数研究函数的单调性极值与最值、考查了推理能力与计算能力,属于中档题.求三角函数的最值问题,一般是通过两角和差的正余弦公式将函数表达式化为一次一角一函数,或者化为熟悉的二次函数形式的复合函数来解决.4、D【解题分析】

可以得出,从而得出c<a,同样的方法得出a<b,从而得出a,b,c的大小关系.【题目详解】,,根据对数函数的单调性得到a>c,,又因为,,再由对数函数的单调性得到a<b,∴c<a,且a<b;∴c<a<b.故选D.【题目点拨】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.5、B【解题分析】

根据三视图知该几何体是三棱锥与圆锥体的所得组合体,结合图中数据计算该组合体的体积即可.【题目详解】解:根据三视图知,该几何体是三棱锥与圆锥体的组合体,如图所示;则该组合体的体积为;所以对应不规则几何体的体积为.故选B.【题目点拨】本题考查了简单组合体的体积计算问题,也考查了三视图转化为几何体直观图的应用问题,是基础题.6、A【解题分析】

首先画出函数y=x+1+x-1的图像,求解不等式【题目详解】如图:y=x+1由图像可知x+1+x-1≥2恒成立,所以解集是R,x-1≤x≤1是R的真子集,所以“故选A.【题目点拨】本题考查了充分不必要条件的判断,属于基础题型.7、D【解题分析】

直接利用反证法的定义得到答案.【题目详解】中至少有一个大于1的反面为均不大于1,故假设应为:均不大于1.故选:.【题目点拨】本题考查了反证法,意在考查学生对于反证法的理解.8、B【解题分析】

由二倍角的正弦公式以及已知条件得出和的符号,由此得出角所在的象限.【题目详解】由于点位于第三象限,则,得,因此,角为第二象限角,故选B.【题目点拨】本题考查角所在象限的判断,解题的关键要结合已知条件判断出角的三角函数值的符号,利用“一全二正弦,三切四余弦”的规律判断出角所在的象限,考查推理能力,属于中等题.9、C【解题分析】

根据已知求的例子,令,即,解方程即可得到的值.【题目详解】令,即,即,解得(舍),故故选:C【题目点拨】本题考查归纳推理,算术和方程,读懂题中整体代换的方法、理解其解答过程是关键,属于基础题.10、A【解题分析】

通过判断命题p和q的真假,从而求得参数的取值范围.【题目详解】解:若命题p:“∀∈[1,e],a>ln则a>ln若命题q:“∃x∈R,x2则Δ=16-4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则a>1a≤4解得:1<a≤4.故实数a的取值范围为(1,4].故选A.【题目点拨】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.11、A【解题分析】作出约束条件对应的平面区域(阴影部分),由z=2x﹣y,得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z,经过点A时,直线y=2x﹣z的截距最大,此时z最小.由解得A(0,2).此时z的最大值为z=2×0﹣2=﹣2,故选A.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.12、C【解题分析】

利用复数相等和函数极值点的概念可判断p,q的真假;利用真值表判断复合命题的真假.【题目详解】由复数相等的概念得到p:真;若函数可导,则“”是“x0是函数的极值点”是错误的,当是导函数的变号零点,即在这个点附近,导函数的值异号,此时才是极值点,故q:假,为真.∴由真值表知,为真,故选C.【题目点拨】本题考查真值表,复数相等的概念,求极值的方法.由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.假若p且q真,则p真,q也真;若p或q真,则p,q至少有一个真;若p且q假,则p,q至少有一个假.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由题意可知集合U的子集有个,然后求出任取集合U的两个子集A、B的个数m,及时A、B的所有个数n,根据可求结果.【题目详解】解:集合2,3,,的子集有个,集合A、B是集合U的子集,任取集合U的两个子集A、B的所有个数共有个,,若,则B有个,若A为单元数集,则B的个数为个,同理可得,若2,,则只要1个即,则A、B的所有个数为个,集合A紧跟集合B”的概率为.故答案为【题目点拨】本题考查古典概率公式的简单应用,解题的关键是基本事件个数的确定.14、【解题分析】

作出辅助线,由题意首先找到AE与平面所成角,然后结合几何关系求解线面角的大小即可.【题目详解】如图所示,连结BE,由题意可知:,∵AB⊥平面B1BCC1,∴∠AEB是AE与平面B1BCC1所成的角,,.故答案为:.【题目点拨】本题主要考查线面角的计算,空间几何体中的线面关系等知识,意在考查学生的转化能力和计算求解能力.15、【解题分析】

根据复数几何意义以及椭圆定义列关于的条件,再解不等式得的取值范围.【题目详解】因为表示的动点的轨迹是椭圆,所以复数所对应点距离小于4,即故答案为:【题目点拨】本题考查复数几何意义以及椭圆定义,考查综合分析求解能力,属中档题.16、【解题分析】

先利用定积分计算底面面积,再用体积公式得到答案.【题目详解】的图象与轴围城一个封闭的区域故答案为【题目点拨】本题考查了体积的计算,意在考查学生解决问题的能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解题分析】分析:(1)求导,对参数分两种情况进行讨论,令得函数的单调递增区间,令得函数的单调递减区间;(2)令,分离参数得,令,研究函数的性质,可将证明转化为证明,即证明成立,令,利用导数研究函数的增减性,可得,问题得证.详解:(1),当时,,则在上单调递增.当时,令,得,则的单调递增区间为,令,得,则的单调递减区间为.(2)证明:由得,设,则.由,得;由,得.故的最小值.当时,,当时,,不妨设,则,等价于,且在上单调递增,要证:,只需证,,只需证,即,即证;设,则,令,则,,在上单调递减,即在上单调递减,,在上单调递增,,从而得证.点睛:本题主要考查导数的应用,第一问属于易得分题,只需对参数进行分类讨论,再分别令,即可求解函数的增、减区间,进而判断其单调性;第二问解题时,首先对进行参数分离,再构造新函数,利用函数的单调性,将原问题转化为不等式恒成立问题,进而再利用导数证明.18、(1);(2)440【解题分析】

(1)先计算出选取的人中,全都是高于岁的概率,然后用减去这个概率,求得至少有人的年龄低于岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望.【题目详解】(1)设事件表示至少有1人的年龄低于45岁,则.(2)由题意知,以手机支付作为首选支付方式的概率为.设表示销售的10件商品中以手机支付为首选支付的商品件数,则,设表示销售额,则,所以销售额的数学期望(元).【题目点拨】本小题主要考查利用对立事件来计算古典概型概率问题,考查二项分布的识别和期望的计算,考查随机变量线性运算后的数学期望的计算.19、(1);(2).【解题分析】分析:(1)由题意得到关于a,b的方程组,求解方程组可知;(2)由(1)得,据此可得切线方程为.详解:(1),依题意得,即,解得,经检验,符合题意.(2)由(1)得,∴.,,∴曲线在处的切线方程为,即.点睛:导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.20、(1);(2)680元.【解题分析】

(1)根据题意,列方程,然后求解即可(2)根据题意,计算出10000元使用“余额宝”的利息为(元)和10000元使用“财富通”的利息为(元),得到所有可能的取值为560(元),700(元),840(元),然后根据所有可能的取值,计算出相应的概率,并列出的分布列表,然后求解数学期望即可【题目详解】(1)据题意,得,所以.(2)据,得这被抽取的7人中使用“余额宝”的有4人,使用“财富通”的有3人.10000元使用“余额宝”的利息为(元).10000元使用“财富通”的利息为(元).所有可能的取值为560(元),700(元),840(元).,,.的分布列为560700840所以(元).【题目点拨】本题考查频数分布表以及分布列和数学期望问题,属于基础题21、(1);(2)直线的方程为,的面积为.【解题分析】

求得圆的圆心和半径.(1)当三点均不重合时,根据圆的几何性质可知,是定点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论