版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市徐汇、松江、金山区数学高二下期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2017年1月我市某校高三年级1600名学生参加了全市高三期末联考,已知数学考试成绩(试卷满分150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次期末联考中成绩不低于120分的学生人数约为A.120 B.160 C.200 D.2402.展开式中x2的系数为()A.15 B.60 C.120 D.2403.若,且,则“”是“方程表示焦点在y轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.下列命题是真命题的为()A.若,则 B.若,则C.若,则 D.若,则5.设为两条不同的直线,为两个不同的平面,下列命题中正确的是()A.若,,,则 B.若,,,则C.若,,,则 D.若,,,则6.设F,B分别为椭圆的右焦点和上顶点,O为坐标原点,C是直线与椭圆在第一象限内的交点,若,则椭圆的离心率是()A. B. C. D.7.己知复数z1=3+ai(a∈R),z2A.-1 B.1 C.10 D.38.二项式的展开式中的系数为,则()A. B. C. D.29.函数的周期,振幅,初相分别是()A. B. C. D.10.甲射击时命中目标的概率为,乙射击时命中目标的概率为,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为()A. B. C. D.11.函数的零点个数是()A.0 B.1 C.2 D.312.已知等比数列的前项和为,则的极大值为()A.2 B.3 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知方程x2-2x+p=0的两个虚根为α、β,且α-β=4,则实数14.已知抛物线的焦点为,准线与轴的交点为为抛物线上的一点,且满足,则=_____.15.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本(单位:元)的资料进行线性回归分析,得到结果如下:,,,,则销量每增加1千箱,单位成本约下降________元(结果保留5位有效数字).附:回归直线的斜率和截距的最小二乘法公式分别为:,.16.(x-1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,集合.(1)当时,解不等式;(2)若,且,求实数的取值范围;(3)当时,若函数的定义域为,求函数的值域.18.(12分)设椭圆经过点,其离心率.(1)求椭圆的方程;(2)直线与椭圆交于、两点,且的面积为,求的值.19.(12分)已知函数(其中,为自然对数的底数).(Ⅰ)若函数无极值,求实数的取值范围;(Ⅱ)当时,证明:.20.(12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,(Ⅰ)求证:平面BCD;(Ⅱ)求点E到平面ACD的距离.21.(12分)如图,在矩形中,,,是的中点,以为折痕将向上折起,变为,且平面平面.(1)求证:;(2)求二面角的大小.22.(10分)已知函数.(1)若函数存在不小于的极小值,求实数的取值范围;(2)当时,若对,不等式恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】结合正态分布图象的性质可得:此次期末联考中成绩不低于120分的学生人数约为.选C.2、B【解题分析】
∵展开式的通项为,令6-r=2得r=4,∴展开式中x2项为,所以其系数为60,故选B3、B【解题分析】
由指数函数的单调性可得;由椭圆方程可得,再由充分必要条件的定义,即可得到所求结论.【题目详解】解:若,则,若方程表示焦点在y轴上的椭圆,则,即“”是“方程表示焦点在y轴上的椭圆”的必要不充分条件.故选:【题目点拨】本题考查指数函数的单调性以及椭圆方程,考查充分必要条件的定义,考查推理能力,属于基础题.4、A【解题分析】试题分析:B若,则,所以错误;C.若,式子不成立.所以错误;D.若,此时式子不成立.所以错误,故选择A考点:命题真假5、C【解题分析】
通过作图的方法,可以逐一排除错误选项.【题目详解】如图,相交,故A错误如图,相交,故B错误D.如图,相交,故D错误故选C.【题目点拨】本题考查直线和平面之间的位置关系,属于基础题.6、A【解题分析】
根据向量的加法法则及共线向量的性质由已知,得与交点为的中点,从而有,然后把四边形的面积用两种不同方法表示后可得的关系式,从而得离心率.【题目详解】根据,由平面向量加法法则,则与交点为的中点,故,由得,,则可得故选A.【题目点拨】本题考查椭圆的几何性质,解题关键有两个,一个是由向量的加法法则和共线定理得出与交点为的中点,一个是把四边形的面积用两种不同方法表示得出的关系.7、B【解题分析】
根据复数的除法运算和纯虚数的概念求得.【题目详解】由已知得:z1z所以3-3a=09+a≠0,解得:故选B.【题目点拨】本题考查复数的除法运算和纯虚数的概念,属于基础题.8、A【解题分析】
利用二项式定理的展开式可得a,再利用微积分基本定理即可得出.【题目详解】二项式(ax+)6的展开式中通项公式:Tr+2=(ax)r,令r=2,则T6=××a2x2.∵x2的系数为,∴×a2=,解得a=2.则x2dx=x2dx==.故选:A.【题目点拨】用微积分基本定理求定积分,关键是求出被积函数的原函数.此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加9、C【解题分析】
利用求得周期,直接得出振幅为,在中令求得初相.【题目详解】依题意,,函数的振幅为,在中令求得初相为.故选C.【题目点拨】本小题主要考查中所表示的含义,考查三角函数周期的计算.属于基础题.其中表示的是振幅,是用来求周期的,即,要注意分母是含有绝对值的.称为相位,其中称为初相.还需要知道的量是频率,也即是频率是周期的倒数.10、D【解题分析】
记事件甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件的对立事件的概率,再利用对立事件的概率公式可得出事件的概率.【题目详解】记事件甲乙两人各自射击同一目标一次,该目标被击中,则事件甲乙两人各自射击同一目标一次,两人都未击中目标,由独立事件的概率乘法公式得,,故选D.【题目点拨】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.11、B【解题分析】
因为和在均为增函数,所以在单调递增,所以函数至多一个零点,再给赋值,根据可得函数在上有一个零点【题目详解】因为与均在上为增函数,所以函数至多一个零点又,,,即函数在上有一个零点答案选B【题目点拨】零点问题可根据零点存在定理进行判断,也可采用构造函数法,根据构造的两新函数函数交点个数来确定零点个数12、C【解题分析】由题意得,,,,则,解得,则,,令,解得,当时,为增函数;,为减函数;,为增函数,所以函数的极大值为,故选C.点睛:此题主要考查了等比数列前项和、函数极值的求解等有关方面的知识,及幂运算等运算能力,属于中档题型,也是常考考点.在首先根据等比数列前项和公式求出参数的值,再利用导数方法,求出函数的极值点,通过判断极值点两侧的单调性求出极大值点,从而求出函数的极大值.二、填空题:本题共4小题,每小题5分,共20分。13、5【解题分析】
根据题意得出Δ<0,然后求出方程x2-2x+p=0的两个虚根,再利用复数的求模公式结合等式α-β=4可求出实数【题目详解】由题意可知,Δ=4-4p<0,得p>1.解方程x2-2x+p=0,即x-12=1-p,解得所以,α-β=2p-1故答案为5.【题目点拨】本题考查实系数方程虚根的求解,同时也考查了复数模长公式的应用,考查运算求解能力,属于中等题.14、【解题分析】分析:利用抛物线的性质,过作准线的垂线交准线于,则,则,在中可表示出,计算即可得到答案详解:过作准线的垂线交准线于则故点睛:本题主要考查了抛物线的简单性质,解答本题的关键是记清抛物线上点到焦点距离等于到准线距离,灵活运用抛物线的定义来解题15、1.8182【解题分析】
根据所给的数据和公式可以求出回归直线方程,根据回归直线斜率的意义可以求出销量每增加1千箱,单位成本约下降多少元.【题目详解】由所给的数据和公式可求得:,,所以线性回归方程为:,所以销量每增加1千箱,单位成本约下降元.故答案为:1.8182【题目点拨】本题考查了求线性回归方程,考查了直线斜率的意义,考查了数学运算能力.16、-5【解题分析】试题分析:∵(x-12x)6的通项为,令,∴,故展开式中常数项为-考点:二项式定理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)当时,的值域为;当时,的值域为;当时,的值域为.【解题分析】分析:(1)先根据一元二次方程解得ex>3,再解对数不等式得解集,(2)解一元二次不等式得集合A,再根据,得log2f(x)≥1在0≤x≤1上有解,利用变量分离法得a≥3ex-e2x在0≤x≤1上有解,即a≥[3ex-e2x]min.最后根据二次函数性质求最值得结果,(3)先转化为对勾函数,再根据拐点与定义区间位置关系,分类讨论,结合单调性确定函数值域.详解:(1)当a=-3时,由f(x)>1得ex-3e-x-1>1,所以e2x-2ex-3>0,即(ex-3)(ex+1)>0,所以ex>3,故x>ln3,所以不等式的解集为(ln3,+∞).(2)由x2-x≤0,得0≤x≤1,所以A={x|0≤x≤1}.因为A∩B≠,所以log2f(x)≥1在0≤x≤1上有解,即f(x)≥2在0≤x≤1上有解,即ex+ae-x-3≥0在0≤x≤1上有解,所以a≥3ex-e2x在0≤x≤1上有解,即a≥[3ex-e2x]min.由0≤x≤1得1≤ex≤e,所以3ex-e2x=-(ex-)2+∈[3e-e2,],所以a≥3e-e2.(3)设t=ex,由(2)知1≤t≤e,记g(t)=t+-1(1≤t≤e,a>1),则,t(1,)(,+∞)g′(t)-0+g(t)↘极小值↗①当≥e时,即a≥e2时,g(t)在1≤t≤e上递减,所以g(e)≤g(t)≤g(1),即.所以f(x)的值域为.②当1<<e时,即1<a<e2时,g(t)min=g()=2-1,g(t)max=max{g(1),g(e)}=max{a,}.1°若a,即e<a<e2时,g(t)max=g(1)=a;所以f(x)的值域为;2°若a,即1<a≤e时,g(t)max=g(e)=,所以f(x)的值域为.综上所述,当1<a≤e时,f(x)的值域为;当e<a<e2时,f(x)的值域为;当a≥e2时,f(x)的值域为.点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.18、(1);(2).【解题分析】分析:(1)由经过点P,得,由离心率为得=,再根据a2=b2+c2联立解方程组即可;(2)联立直线方程与椭圆方程消y,得,易知判别式△>1,设A(x1,y1),B(x2,y2),弦长公式及点到直线的距离公式可表示出△PAB的面积,令其为,即可解出m值,验证是否满足△>1.详解:(1)解:由已知解得,,∴椭圆的方程为.(2)解:由得:由得:设,,则,∴又到的距离为,∴即,解得:.符合,故.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.19、(1)实数的取值范围是;(2)见解析.【解题分析】分析:(1)因为函数无极值,所以在上单调递增或单调递减.即或在时恒成立,求导分析整理即可得到答案;(2)由(Ⅰ)可知,当时,当时,,即.欲证,只需证即可,构造函数=(),求导分析整理即可.详解:(Ⅰ)函数无极值,在上单调递增或单调递减.即或在时恒成立;又,令,则;所以在上单调递减,在上单调递增;,当时,,即,当时,显然不成立;所以实数的取值范围是.(Ⅱ)由(Ⅰ)可知,当时,当时,,即.欲证,只需证即可.构造函数=(),则恒成立,故在单调递增,从而.即,亦即.得证.点睛:可以从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明,其一般步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.20、(Ⅰ)详见解析(Ⅱ)【解题分析】
试题分析:(Ⅰ)要证明平面BCD,需要证明,,证明时主要是利用已知条件中的线段长度满足勾股定理和等腰三角形三线合一的性质(Ⅱ)中由已知条件空间直角坐标系容易建立,因此可采用空间向量求解,以为坐标原点,以方向为轴,轴,轴正方向建立空间直角坐标系,求出平面的法向量和斜线的方向向量,代入公式计算试题解析:(Ⅰ)证明:为的中点,,,,,,又,,,均在平面内,平面(Ⅱ)方法一:以为坐标原点,以方向为轴,轴,轴正方向建立空间直角坐标系,则,设为平面的法向量,则,取,,则点到平面的距离为方法二:设点在上,且,连,为的中点,平面,平面,平面,平面平面,平面平面,且交线为过点作于点,则平面分别为的中点,则平面,平面,平面,点到平面的距离即,故点到平面的距离为考点:1.线面垂直的判定;2.点到面的距离21、(1)见证明;(2)90°【解题分析】
(1)利用垂直于所在的平面,从而证得;(2)找到三条两两互相垂直的直线,建立空间直角坐标系,写出点的坐标,再分别求出两个面的法向量,,最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电机学课件-清华大学
- 2024年全新装修设计合作协议2篇
- 广西大学附属中学消防讲座课件张琳敏课件
- 房屋担保租赁合同(2篇)
- 2024年互联网租赁平台自行车退租退款及押金返还协议3篇
- 2025年贵州货运从业资格考试模拟考试题库及答案解析
- 2025年福州货运从业资格试题答案解析
- 2025年武汉货运从业资格证考试模拟考试题及答案
- 2025年克拉玛依b2考货运资格证要多久
- 2025年塔城货运资格证培训考试题
- NJR2-D系列软起动器出厂参数设置表
- 中药合理应用
- 服务礼仪考核标准
- 光缆分光分纤盒施工及验收方案
- 高职学前教育专业一专多能人才培养模式的创建与实践讲述
- 五年级上学期开学家长会(课堂PPT)
- 病理报告模版
- 职业规划职业生涯人物访谈PPT教学模板
- 宁波市地面沉降基础资料
- 臀疗话术63089
- 关于21三体综合症的综述
评论
0/150
提交评论