版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省非凡吉名校创联盟数学高二下期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量满足条件~,且,那么与的值分别为A. B. C. D.2.如图梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.则在翻折过程中,可能成立的结论的个数为()A.1 B.2 C.3 D.43.已知向量,,且,则等于().A. B. C. D.4.若随机变量的数学期望,则的值是()A. B. C. D.5.方程的实根所在的区间为()A. B. C. D.6.的展开式中的项的系数是()A. B. C. D.7.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3 C.92cm3 D.84cm38.设复数满足,则()A. B. C. D.9.已知随机变量满足,则下列选项正确的是()A. B.C. D.10.已知函数图象如图,是的导函数,则下列数值排序正确的是()A.B.C.D.11.已知集合,则()A. B. C. D.12.()A.2 B.1 C.0 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=______________14.lg5+1g20+e0的值为_____15.已知为抛物线上一个动点,定点,那么点到点的距离与点到抛物线的准线的距离之和的最小值是__________.16.如图①,矩形的边,直角三角形的边,,沿把三角形折起,构成四棱锥,使得在平面内的射影落在线段上,如图②,则这个四棱锥的体积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-4:坐标系与参数方程.已知直线(为参数),曲线(为参数).(1)设与相交于两点,求;(2)曲线为(为参数),点是曲线上的一个动点,求它到直线的距离的最小值.18.(12分)实数m取什么数值时,复数分别是:(1)实数?(2)虚数?(3)纯虚数?19.(12分)已知复数为虚数单位.(1)若复数对应的点在第四象限,求实数的取值范围;(2)若,求的共轭复数.20.(12分)已知函数(为常数).(1)讨论函数的单调性;(2)当时,设的两个极值点,()恰为的零点,求的最小值.21.(12分)已知函数为常数,且)有极大值,求的值.22.(10分)已知:已知函数(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;(Ⅱ)若a=1,求f(x)的极值;
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据二项分布的均值与方差公式列方程组解出n与p的值.【题目详解】∵X~B(n,p)且,∴,解得n=15,p故选C.【题目点拨】本题考查了二项分布的均值与方差公式的应用,考查了运算能力,属于基础题.2、B【解题分析】分析:利用空间中线线、线面、面面间的位置关系求解.详解:对于①:因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;对于②:设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD:BC:AB=2:3:4可使条件满足,所以②正确;对于③:当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;对于④:因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故选B.点睛:本题考查命题真假的判断,解题时要认真审题,注意空间思维能力的培养.3、B【解题分析】
由向量垂直可得,求得x,及向量的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【题目详解】由,可得,代入坐标运算可得x-4=0,解得x=4,所以,得=5,选B.【题目点拨】求向量的模的方法:一是利用坐标,二是利用性质,结合向量数量积求解.4、C【解题分析】分析:由题意结合二项分布数学期望的计算公式求解实数p的值即可.详解:随机变量则的数学期望,据此可知:,解得:.本题选择C选项.点睛:本题主要考查二项分布的数学期望公式及其应用,意在考查学生的转化能力和计算求解能力.5、B【解题分析】
构造函数,考查该函数的单调性,结合零点存在定理得出答案.【题目详解】构造函数,则该函数在上单调递增,,,,由零点存在定理可知,方程的实根所在区间为,故选B.【题目点拨】本题考查零点所在区间,考查零点存在定理的应用,注意零点存在定理所适用的情形,必要时结合单调性来考查,这是解函数零点问题的常用方法,属于基础题.6、B【解题分析】
试题分析:的系数,由的次项乘以,和的2次项乘以的到,故含的是,选.考点:二项式展开式的系数.【方法点睛】二项式展开式在高考中是一个常考点.两个式子乘积相关的二项式展开式,首先考虑的是两个因式相乘,每个项都要相互乘一次,这样就可以分解成乘以常数和乘以一次项两种情况,最后将两种情况球出来的系数求和.如要求次方的系数,计算方法就是,也就是说,有两个是取的,剩下一个就是的.7、B【解题分析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=1.故选B.考点:由三视图求面积、体积.8、C【解题分析】由,得,则,故选C.9、B【解题分析】
利用期望与方差性质求解即可.【题目详解】;.故,.故选.【题目点拨】考查期望与方差的性质,考查学生的计算能力.10、C【解题分析】结合函数的图像可知过点的切线的倾斜角最大,过点的切线的倾斜角最小,又因为点的切线的斜率,点的切线斜率,直线的斜率,故,应选答案C.点睛:本题旨在考查导数的几何意义与函数的单调性等基础知识的综合运用.求解时充分借助题设中所提供的函数图形的直观,数形结合进行解答.先将经过两切点的直线绕点逆时针旋转到与函数的图像相切,再将经过两切点的直线绕点顺时针旋转到与函数的图像相切,这个过程很容易发现,从而将问题化为直观图形的问题来求解.11、D【解题分析】
计算出A集合,则可以比较简单的判断四个选项的正误.【题目详解】可以排除且故选择D.【题目点拨】考查集合的包含关系,属于简单题.12、C【解题分析】
用微积分基本定理计算.【题目详解】.故选:C.【题目点拨】本题考查微积分基本定理求定积分.解题时可求出原函数,再计算.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解题分析】分析:展开式的系数为的二次项系数,加上与展开式中的系数乘积的和,由此列方程求得的值.详解:,其展开式中含项的系数,解得,故答案为.点睛:本题主要考查了二项式定理的应用问题,利用二项式展开式的通项公式求某一项的系数,是常见的题目.14、【解题分析】
利用对数与指数的运算性质,即可求解,得到答案.【题目详解】由题意,可得,故答案为3.【题目点拨】本题主要考查了对数的运算性质,以及指数的运算性质的应用,着重考查了运算与求解能力,属于基础题.15、【解题分析】由抛物线的焦点为,根据抛物线的定义可知点到准线的距离等于点的焦点的距离,设点到抛物线的准线的距离为,所以,可得当三点共线时,点到点的距离与点到准线的距离之和最小,所以最小值为.点睛:本题主要考查了抛物线的定义及其标准方程的应用,解答中把抛物线上的点到准线的距离转化为到抛物线的焦点的距离是解答的关键,这是解答抛物线最值问题的一种常见转化手段,着重考查了学生的转化与化归和数形结合思想的应用.16、【解题分析】
设,可得,.,由余弦定理以及同角三角函数的关系得,则,利用配方法可得结果.【题目详解】因为在矩形内的射影落在线段上,所以平面垂直于平面,因为,所以平面,,同理,设,则,.在中,,,所以,所以四棱锥的体积.因为,所以当,即时,体积取得最大值,最大值为,故答案为.【题目点拨】本题主要考查面面垂直的性质,余弦定理的应用以及锥体的体积公式,考查了配方法求最值,属于难题.解决立体几何中的最值问题一般有两种方法:一是几何意义,特别是用空间点线面关系和平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1;(2).【解题分析】分析:(1)由题意,,求得直线的普通方程,联立方程组,求得两点的坐标,即可求得的长;(2)根据曲线的方程,设点的坐标是,利用点到直线的距离公式,求得点到直线的距离,再利用三角函数的性质,即可求解结果.详解:(1)直线的普通方程为,的普通方程为.联立方程组,解得与的交点为,则.………5分(2)曲线为(为参数),故点的坐标是,从而点到直线的距离是,由此当时,取得最小值,且最小值为.…10分点睛:本题主要考查了参数方程与普通方程的互化,以及曲线的参数方程的应用,把直线和曲线的参数方程转化为普通方程,利用点到直线的距离公式求解是解答的关键,着重考查了推理与运算能力.18、(1);(2);(3).【解题分析】本试题主要是考查了复数的概念的运用.先求解实数和虚数以及纯虚数的前提下各个参数m的取值问题.注意虚数虚部不为零,虚部为零是实数,实部为零,虚部不为零是纯虚数,因此可知结论.解:(1)当,即时,复数z是实数;……4分(2)当,即时,复数z是虚数;……8分(3)当,且时,即时,复数z是纯虚数.…12分19、(1);(2)【解题分析】试题分析:(1)求出复数的代数形式,根据第四象限的点的特征,求出的范围;(2)由已知得出,代入的值,求出.试题解析;(I)=,由题意得解得(2)20、(Ⅰ)当时,的单调递增区间为,单调递减区间为,当时,的单调递增区间为;(Ⅱ).【解题分析】试题分析:(1)先求函数导数,讨论导函数符号变化规律:当时,导函数不变号,故的单调递增区间为.当时,导函数符号由正变负,即单调递增区间为,单调递减区间减区间为,(2)先求导数得为方程的两根,再求导数得,因此,而由为的零点,得,两式相减得,即得,因此,从而,其中根据韦达定理确定自变量范围:因为又,所以试题解析:(1),当时,由解得,即当时,单调递增,由解得,即当时,单调递减,当时,,即在上单调递增,当时,故,即在上单调递增,所以当时,的单调递增区间为,单调递减区间减区间为,当时,的单调递增区间为.(2),则,所以的两根即为方程的两根.因为,所以,又因为为的零点,所以,两式相减得,得,而,所以令,由得因为,两边同时除以,得,因为,故,解得或,所以,设,所以,则在上是减函数,所以,即的最小值为.考点:利用导数求函数单调区间,利用导数求函数最值【思路点睛】导数与函数的单调性(1)函数单调性的判定方法:设函数y=f(x)在某个区间内可导,如果f′(x)>0,则y=f(x)在该区间为增函数;如果f′(x)<0,则y=f(x)在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.21、【解题分析】
求导,解出导数方程的两根,讨论导数在这两个点左右两边导数的符号,确定极大值点,再将极大值点代入函数解析式,可求出实数的值.【题目详解】,则,令,得,,,,列表如下:极大值极小值所以,函数在处取得极大值,即,解得.【题目点拨】本题考查利用导数求函数的极值,基本步骤如下:(1)求函数的定义域;(2)求导;(3)求极值点并判断导数在极值点附近的符号,确定极值点的属性;(4)将极值点代入函数解析式可求出极值.22、(1)-2;(2)极小值为,极大值为.【解题分析】分析:(1)求出曲线y=f(x)在点P(2,f(2))处的导数值等于切线的斜率为﹣6,即可求出;(2)通过a=1时,利用导函数为0,判断导数符号,即可求f(x)的极值.详解:(Ⅰ)因为f′(x)=﹣x2+x+2a,曲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度体育产业人才招聘与赛事运营管理合同3篇
- 2024年05月中国银行上海市分行社会招聘(60人)笔试历年参考题库附带答案详解
- 2025年度公厕保洁服务与用户满意度调查协议3篇
- 2024年沁源县妇幼保健站高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年塑料篷布编织袋项目可行性研究报告
- 2024年中国无色铜钝化剂市场调查研究报告
- 2024年中国插销开关矿车市场调查研究报告
- 《大直径浅圆仓侧压力计算方法及其数值模拟研究》
- 《基于高密度电法的煤矿多层采空区数值模拟研究》
- 2024年不锈钢凉水桶项目可行性研究报告
- 承压设备事故及处理课件
- 煤层气现场监督工作要点
- 工会经费收支预算表
- 舒尔特方格55格200张提高专注力A4纸直接打印版
- 质量管理体系各条款的审核重点
- 聚丙烯化学品安全技术说明书(MSDS)
- BBC美丽中国英文字幕
- 卫生院工程施工组织设计方案
- CDR-临床痴呆评定量表
- 《八年级下学期语文教学个人工作总结》
- 铝合金门窗制作工艺卡片 - 修改
评论
0/150
提交评论