陕西省西安市第四十六中学2024届数学高二第二学期期末教学质量检测试题含解析_第1页
陕西省西安市第四十六中学2024届数学高二第二学期期末教学质量检测试题含解析_第2页
陕西省西安市第四十六中学2024届数学高二第二学期期末教学质量检测试题含解析_第3页
陕西省西安市第四十六中学2024届数学高二第二学期期末教学质量检测试题含解析_第4页
陕西省西安市第四十六中学2024届数学高二第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市第四十六中学2024届数学高二第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点且斜率为的直线与抛物线:交于,两点,若的焦点为,则()A. B. C. D.2.下列函数中既是奇函数,又在区间上是单调递减的函数为()A. B. C. D.3.三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为()A.8B.6C.14D.484.函数与两条平行线,及轴围成的区域面积是()A. B. C. D.5.函数(为自然对数的底数)的递增区间为()A. B. C. D.6.已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A.3 B.4 C. D.7.设为两个随机事件,给出以下命题:(1)若为互斥事件,且,,则;(2)若,,,则为相互独立事件;(3)若,,,则为相互独立事件;(4)若,,,则为相互独立事件;(5)若,,,则为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.48.已知命题p:函数的值域为R;命题q:函数是R上的减函数.若p或q为真命题,p且q为假命题,则实数a的取值范围是()A. B. C. D.或9.执行如图所示的程序框图,若输入的,则输出的,的值分别为()A.3,5 B.4,7 C.5,9 D.6,1110.某工厂生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据:根据相关检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为,则这组样本数据的回归直线方程是()A. B. C. D.11.设为虚数单位,复数满足,则A.1 B. C.2 D.12.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件“第一次取到的是偶数”,“第二次取到的是偶数”,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在处的切线方程是_____________14.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.15.在极坐标系中,曲线和相交于点A,B,则线段AB的中点E到极点的距离是______.16.某超市国庆大酬宾,购物满100元可参加一次游戏抽奖活动,游戏抽奖规则如下:顾客将一个半径适当的小球放入如图所示的容器正上方的入口处,小球自由落下过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,落入A袋得奖金4元,落入B袋得奖金8元,已知小球每次遇到黑色障碍物时,向左向右下落的概率都为.已知李女士当天在该超市购物消费128元,按照活动要求,李女士的活动奖金期望值为_____元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知i为虚数单位,m为实数,复数.(1)m为何值时,z是纯虚数?(2)若,求的取值范围.18.(12分)如图,等高的正三棱锥P-ABC与圆锥SO的底面都在平面M上,且圆O过点A,又圆O的直径AD⊥BC,垂足为E,设圆锥SO的底面半径为1,圆锥体积为.(1)求圆锥的侧面积;(2)求异面直线AB与SD所成角的大小;(3)若平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为,求三棱锥的侧棱PA与底面ABC所成角的大小.19.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了月日至月日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下资料:日期月日月日月日月日月日温差发芽数(颗)该农科所确定的研究方案是:先从这五组数据中选取组,用剩下的组数据求线性回归方程,再对被选取的组数据进行检验.(1)求选取的组数据恰好是不相邻天数据的概率;(2)若选取的是月日与月日的两组数据,请根据月日至月日的数据,求出关于的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?20.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线交于两点.(1)求直线的普通方程和曲线的直角坐标方程;(2)已知点的极坐标为,的值.21.(12分)已知命题(其中).(1)若,命题“或”为假,求实数的取值范围;(2)已知是的充分不必要条件,求实数的取值范围.22.(10分)在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若,圆与直线交于两点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:由抛物线方程求出抛物线的焦点坐标,由点斜式求出直线方程,与抛物线方程联立求出的坐标,利用数量积的坐标表示可得结果.详解:抛物线的焦点为,过点且斜率为的直线为,联立直线与抛物线,消去可得,,解得,不仿,,则,故选D.点睛:本题考查抛物线的简单性质的应用,平面向量的数量积的应用,意在考查综合运用所学知识解决问题的能力,属于中档题.2、B【解题分析】

由题意得,对于函数和函数都是非奇非偶函数,排除A、C.又函数在区间上单调递减,在区间单调递增,排除D,故选B.3、D【解题分析】方法一:第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有23=8(种)选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6(个)不同的三位数.由分步乘法计数原理知共可得到8×6=48(个)不同的三位数.方法二:第一步,排百位有6种选择,第二步,排十位有4种选择,第三步,排个位有2种选择.根据分步乘法计数原理,共可得到6×4×2=48(个)不同的三位数.4、B【解题分析】

根据定积分的几何意义直接求出在区间的定积分,即可得出答案。【题目详解】故选B【题目点拨】本题考查定积分的几何意义,属于基础题。5、D【解题分析】,由于恒成立,所以当时,,则增区间为.,故选择D.6、B【解题分析】

由题意得(1+2d)2=1+12d,求出公差d的值,得到数列{an}的通项公式,前n项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【题目详解】∵a1=1,a1、a3、a13成等比数列,∴(1+2d)2=1+12d.得d=2或d=0(舍去),∴an=2n﹣1,∴Snn2,∴.令t=n+1,则t2≥6﹣2=1当且仅当t=3,即n=2时,∴的最小值为1.故选:B.【题目点拨】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.7、D【解题分析】

根据互斥事件的加法公式,易判断(1)的正误;根据相互对立事件的概率和为1,结合相互独立事件的概率满足,可判断(2)、(3)、(4)、(5)的正误.【题目详解】若为互斥事件,且,则,故(1)正确;若则由相互独立事件乘法公式知为相互独立事件,故(2)正确;若,则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(3)正确;若,当为相互独立事件时,故(4)错误;若则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(5)正确.故选D.【题目点拨】本题考查互斥事件、对立事件和独立事件的概率,属于基础题.8、C【解题分析】

分别求命题为真命题时的范围,命题为真命题时的范围;根据或为真命题,且为假命题,得到命题,中有一个真命题,一个假命题,分命题为真命题且命题为假命题和命题为真命题且命题为假命题两类求出的范围.【题目详解】解:命题为真时,即真数部分能够取到大于零的所有实数,故二次函数的判别式,从而;命题为真时,解得.若或为真命题,且为假命题,故和中只有一个是真命题,一个是假命题.若为真,为假时,,无解;若为假,为真时,,解得;综上可得,故选:.【题目点拨】本题考查根据复合命题的真假得到构成其简单命题的真假情况,属于中档题.9、C【解题分析】执行第一次循环后,,,执行第二次循环后,,,执行第三次循环后,,,执行第四次循环后,此时,不再执行循环体,故选C.点睛:对于比较复杂的流程图,可以模拟计算机把每个语句依次执行一次,找出规律即可.10、C【解题分析】由题意可知,,线性回归方程过样本中心,所以只有C选项满足.选C.【题目点拨】线性回归方程过样本中心,所以可以代入四个选项进行逐一检验.11、B【解题分析】

利用复数代数形式的乘除运算,再由复数的模的计算公式求解即可.【题目详解】由,得,,故选.【题目点拨】本题主要考查复数代数形式的乘除运算以及复数的模的计算.12、B【解题分析】分析:事件A发生后,只剩下8个数字,其中只有3个偶数字,由古典概型概率公式可得.详解:在事件A发生后,只有8个数字,其中只有3个偶数字,∴.故选B.点睛:本题考查条件概率,由于是不放回取数,因此事件A的发生对B的概率有影响,可考虑事件A发生后基本事件的个数与事件B发生时事件的个数,从而计算概率.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

求导函数,确定曲线在处的切线斜率,从而可求切线方程.【题目详解】求导函数可得y,

当时,y,

∴曲线在点处的切线方程为

即答案为.【题目点拨】本题考查导数的几何意义,考查切线方程,属于基础题.14、【解题分析】

由组合数结合古典概型求解即可【题目详解】从11个数中随机抽取3个数有种不同的方法,其中能构成勾股数的有共三种,所以,所求概率为.故答案为【题目点拨】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.15、2【解题分析】

将曲线方程化为直角坐标系下的方程,联立方程组,由此求得中点的坐标,再求出其到极点的距离.【题目详解】将曲线方程化为直角坐标方程可得将曲线方程化为直角坐标方程可得,联立两方程可得故可得中点坐标为,则其到坐标原点的距离即为所求,即.故答案为:2.【题目点拨】本题考查将极坐标方程化为普通方程,属基础题.16、5【解题分析】

先记“小球落入A袋中”为事件A,“小球落入B袋中”为事件B,分别求出其对应概率,再由题意得到抽取活动奖金的可能取值,进而可求出结果.【题目详解】记“小球落入A袋中”为事件A,“小球落入B袋中”为事件B,由题意可得,所以.因为李女士当天在该超市购物消费128元,按照活动要求,李女士可参加一次抽奖,抽取活动奖金的可能取值为,所以期望为.故答案为5【题目点拨】本题主要考查离散型随机变量的期望,熟记概念即可,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求解m的值;(2)由复数的几何意义,画出图形,数形结合得答案【题目详解】(1).当时,即时,z是纯虚数;(1)可设复数对应的点为,则由,得,即点在直线上,又,点的轨迹为直线与圆相交的弦,则表示线段上的点到的距离,由图象可知,当时,距离最小,即点到直线的距离,则由得或,,的取值范围是.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数的代数表示法及其几何意义,点到直线的距离公式,两点间的距离公式,属于中档题.18、(1);(2);(3)【解题分析】

(1)利用圆锥体积可求得圆锥的高,进而得到母线长,根据圆锥侧面积公式可求得结果;(2)作交圆锥底面圆于点,则即为异面直线与所成角,在中,求解出三边长,利用余弦定理可求得,从而得到结果;(3)根据截面面积之比可得底面积之比,求得,进而求得等边三角形的边长,利用正棱锥的特点可知若为的中心,则即为侧棱与底面所成角,在中利用正切值求得结果.【题目详解】(1)设圆锥高为,母线长为由圆锥体积得:圆锥的侧面积:(2)作交圆锥底面圆于点,连接,则即为异面直线与所成角由题意知:,,又即异面直线与所成角为:(3)平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为又,即为边长为的等边三角形设为的中心,连接,则三棱锥为正三棱锥平面即为侧棱与底面所成角即侧棱与底面所成角为:【题目点拨】本题考查圆锥侧面积的求解、异面直线所成角的求解、直线与平面所成角的求解.解决立体几何中的角度问题的关键是能够通过平移找到异面直线所成角、通过找到直线在平面内的投影,得到线面角.19、(1);(2);(3)是.【解题分析】

(1)记事件为“选取的且数据恰好是不相邻天的数据”,利用古典概型的概率公式计算出,再利用对立事件的概率公式可计算出;(2)计算、的值,再利用最小二乘法公式求出回归系数和的值,即可得出回归直线方程;(3)分别将和代入回归直线方程,计算出相应的误差,即可对所求的回归直线方程是否可靠进行判断.【题目详解】(1)设事件表示“选取的且数据恰好是不相邻天的数据”,则表示“选取的数据恰好是相邻天的数据”,基本事件总数为,事件包含的基本事件数为,,;(2)由题表中的数据可得,.,.,,因此,回归直线方程为;(3)由(2)知,当时,,误差为;当时,,误差为.因此,所求得的线性回归方程是可靠的.【题目点拨】本题考查古典概型概率的计算,考查回归直线方程的求解与回归直线方程的应用,在求回归直线方程时,要熟悉最小二乘法公式的意义,考查运算求解能力,属于中等题.20、(1),.(2).【解题分析】分析:(1)先根据加减消元法得直线的普通方程,再根据将曲线的极坐标方程化为直角坐标方程;(2)先求P直角坐标,再设直线的参数方程标准式,代入曲线的直角坐标方程,根据参数几何意义以及利用韦达定理得结果.详解:(1)的普通方程为:;又,即曲线的直角坐标方程为:(2)解法一:在直线上,直线的参数方程为(为参数),代入曲线的直角坐标方程得,即,.解法二:,,,.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论