安徽省宣城二中2024届数学高二第二学期期末复习检测试题含解析_第1页
安徽省宣城二中2024届数学高二第二学期期末复习检测试题含解析_第2页
安徽省宣城二中2024届数学高二第二学期期末复习检测试题含解析_第3页
安徽省宣城二中2024届数学高二第二学期期末复习检测试题含解析_第4页
安徽省宣城二中2024届数学高二第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宣城二中2024届数学高二第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设0<p<1,随机变量X,Y的分布列分别为()X123Pp1-pp-Y123Pp1-p当X的数学期望取得最大值时,Y的数学期望为()A.2 B.3316 C.55272.已知实数满足,且,则A. B.2 C.4 D.83.已知,,则的最小值()A. B. C. D.4.下列叙述正确的是()A.若命题“p∧q”为假命题,则命题“p∨q”是真命题B.命题“若x2=1,则x=1”的否命题为“若xC.命题“∀x∈R,2x>0”的否定是“∀xD.“α>45°”是“5.已知集合,集合,则集合的子集个数为()A.1 B.2 C.3 D.46.某研究机构在对具有线性相关的两个变量和进行统计分析时,得到的数据如下表所示.由表中数据求得关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线上方的概率为()4681012122.956.1A. B. C. D.无法确定7.执行如图所示的程序框图,输出S的值为()A.0B.-1C.-128.函数的一个零点落在下列哪个区间()A.(0,1) B.(1,2) C.(2,3) D.(3,4)9.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A. B. C. D.10.在用反证法证明“已知,且,则中至少有一个大于1”时,假设应为()A.中至多有一个大于1 B.全都小于1C.中至少有两个大于1 D.均不大于111.函数y的图象大致为()A. B.C. D.12.下面四个命题::命题“”的否定是“”;:向量,则是的充分且必要条件;:“在中,若,则“”的逆否命题是“在中,若,则“”;:若“”是假命题,则是假命题.其中为真命题的个数是()A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知二项式的展开式中各项的二项式系数之和是16,则展开式中的含项的系数是_________.14.若函数的定义域为,则实数的取值范围为.15.若对一切恒成立,则a的取值范围为________.16.在正数数列an中,a1=1,且点an,an-1n≥2在直线三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某中学开设了足球、篮球、乒乓球、排球四门体育课程供学生选学,每个学生必须且只能选学其中门课程.假设每个学生选学每门课程的概率均为,对于该校的甲、乙、丙名学生,回答下面的问题.(1)求这名学生选学课程互不相同的概率;(2)设名学生中选学乒乓球的人数为,求的分布列及数学期望.18.(12分)已知的内角的对边分别为,且.(1)求;(2)若,,是中点,求的长.19.(12分)已知函数为奇函数,其中求的值;求使不等式成立的的取值范围.20.(12分)在平面直角坐标系中,点是坐标原点,已知点为线段上靠近点的三等分点.求点的坐标:若点在轴上,且直线与直线垂直,求点的坐标.21.(12分)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球(Ⅰ)求取出的3个球中至少有一个红球的概率;(Ⅱ)求取出的3个球得分之和恰为1分的概率;(Ⅲ)设为取出的3个球中白色球的个数,求的分布列.22.(10分)用函数单调性的定义证明:函数在是减函数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

先利用数学期望公式结合二次函数的性质得出EX的最小值,并求出相应的p,最后利用数学期望公式得出EY的值。【题目详解】∵EX=p∴当p=14时,EX取得最大值.此时EY=-2p【题目点拨】本题考查数学期望的计算,考查二次函数的最值,解题的关键就是数学期望公式的应用,考查计算能力,属于中等题。2、D【解题分析】

由,可得,从而得,解出的值即可得结果.【题目详解】实数满足,故,又由得:,解得:,或舍去,故,,故选D.【题目点拨】本题考查的知识点是指数的运算与对数的运算,意在考查灵活应用所学知识解答问题的能力,属于中档题.3、C【解题分析】∵向量,,当t=0时,取得最小值.故答案为.4、B【解题分析】

结合命题知识对四个选项逐个分析,即可选出正确答案.【题目详解】对于选项A,“p∧q”为假命题,则p,q两个命题至少一个为假命题,若p,q两个命题都是假命题,则命题“p∨q”是假命题,故选项A错误;对于选项B,“若x2=1,则x=1”的否命题为“若x2对于选项C,命题“∀x∈R,2x>0”的否定是“∃x0∈R,对于选项D,若α=135°,则tanα<0,故“【题目点拨】本题考查了命题的真假的判断,考查了学生对基础知识的掌握情况.5、D【解题分析】

因为直线与抛物线有两个交点,可知集合的交集有2个元素,可知其子集共有个.【题目详解】由题意得,直线与抛物线有2个交点,故的子集有4个.【题目点拨】本题主要考查了集合的交集运算,子集的概念,属于中档题.6、B【解题分析】

求出样本的中心点,计算出,从而求出回归直线方程,个点中落在回归直线上方的有三个,算出概率即可。【题目详解】由题可得,因为线性回归方程过样本中心点,所以,所以,所以,故个点中落在回归直线上方有,,,共个,所以概率为.故选B.【题目点拨】本题考查线性回归方程和古典概型,解题的关键是求出线性回归方程,属于一般题。7、A【解题分析】试题分析:模拟法:S=0,n=1S=12S=-12S=0,n=7,n>5,输出S=0,故选A.考点:程序框图.8、B【解题分析】

根据函数的零点存在原理判断区间端点处函数值的符号情况,从而可得答案.【题目详解】由的图像在上是连续不间断的.且在上单调递增,又,,根据函数的零点存在原理有:在在有唯一零点且在内.故选:B.【题目点拨】本题考查函数的零点所在区间,利用函数的零点存在原理可解决,属于基础题.9、C【解题分析】

由,得出,计算出基本事件的总数以及事件所包含的基本事件数,然后利用古典概型的概率公式可计算出所求事件的概率.【题目详解】,,即,事件“”所包含的基本事件有:、、、、、、、、、、、、、、、、、、、、,共个,所有的基本事件数为,因此,事件“”的概率为.故选:C.【题目点拨】本题考查利用古典概型的概率公式计算事件的概率,解题的关键就是求出总的基本事件数和所求事件所包含的基本事件数,考查计算能力,属于中等题.10、D【解题分析】

直接利用反证法的定义得到答案.【题目详解】中至少有一个大于1的反面为均不大于1,故假设应为:均不大于1.故选:.【题目点拨】本题考查了反证法,意在考查学生对于反证法的理解.11、B【解题分析】

通过函数的单调性和特殊点的函数值,排除法得到正确答案.【题目详解】因为,其定义域为所以,所以为奇函数,其图像关于原点对称,故排除A、C项,当时,,所以D项错误,故答案为B项.【题目点拨】本题考查利用函数的奇偶性和特殊点的函数值来判断函数的图像,属于简单题.12、B【解题分析】

根据全称命题的否定是特称命题判断;根据向量垂直的坐标表示判断;根据逆否命题的定义判断;由且命题的性质判断.【题目详解】:命题“”的否定是“”,不正确;:的充分且必要条件是等价于,即为,正确;:由逆否命题的定义可知,“在中,若,则“”的逆否命题是“在中,若,则“”,正确;:若“”是假命题,则是假命题或是假命题,不正确.所以,真命题的个数是2,故选B.【题目点拨】本题通过对多个命题真假的判断,主要综合考查全称命题的否定、向量垂直的充要条件、逆否命题的定义、“且”命题的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先由二项式系数之和求出,再根据二项展开式的通项公式,即可求出结果.【题目详解】因为二项式的展开式中各项的二项式系数之和是16,所以,即;所以,其二项展开式的通项为:,令得,所以,因此含项的系数是.故答案为:.【题目点拨】本题主要考查求指定项的系数,熟记二项式定理即可,属于常考题型.14、【解题分析】试题分析:要使函数的定义域为,需满足恒成立.当时,显然成立;当时,即.综合以上两种情况得.考点:不等式恒成立问题.15、【解题分析】

由题意可得恒成立,设,求得导数和单调性、极值和最值,即有a小于最小值.【题目详解】对一切恒成立,可得恒成立,设,则,,当时,,递增;时,,递减,可得处取得极小值,且为最小值4,可得.故答案为:.【题目点拨】本题考查不等式恒成立问题的解法,注意运用参数分离和导数的运用,考查运算能力,属于中档题.16、2【解题分析】

在正数数列an中,由点an,an-1在直线x-2y=0上,知a【题目详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【题目点拨】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)分布列见解析,期望为.【解题分析】分析:(1)每个学生必须且只能选学其中门课程,每一个人都有4种选择,共有,名学生选学课程互不相同,则有种,从而求解;(2)的所有可能取值为,,,,分别算出对应的概率,再利用期望公式求解.详解:(1)名学生选学的课程互不相同的概率.(2)的所有可能取值为,,,,,,,,∴的分布列为:.点睛:求随机变量及其分布列的一般步骤(1)明确随机变量的所有可能取值,以及取每个值所表示的意义.(2)利用排列、组合知识或互斥事件、独立事件的概率公式求出随机变量取每个可能值的概率;(3)按规范形式写出随机变量的分布列,并用分布列的性质验证.18、(1)(2)【解题分析】

(1)通过正弦定理和余弦定理即可得到答案;(2)在中使用余弦定理即可得到的长.【题目详解】(1)因为所以由正弦定理得:由余弦定理得:又,所以(2)由,,,得:所以在中,,所以【题目点拨】本题主要考查正余弦定理在解三角形中的实际应用,意在考查学生的转化能力,分析能力及计算能力,难度不大.19、(1),.(2)【解题分析】

(1)根据,可化简为,已知,解出的值;(2)根据(1)的结果,解不等式,求的取值范围.【题目详解】解:因为为奇函数,所以对定义域内任意的恒成立即化简得故,,解得,.由知由,得解得综上,满足题意的的取值范围是【题目点拨】本题考查了对数型函数是奇函数求参数取值的问题,属于基础题型,当对数型函数是奇函数时,经常利用,计算求解.20、(1)(2)【解题分析】

(1)由题意利用线段的定比分点坐标公式,两个向量坐标形式的运算法则,求出点P的坐标.(2)由题意利用两个向量垂直的性质,两个向量坐标形式的运算法则,求出点Q的坐标.【题目详解】设,因为,所以,又,所以,解得,从而.设,所以,由已知直线与直线垂直,所以则,解得,所以.【题目点拨】本题主要考查了线段的定比分点坐标公式,两个向量垂直的性质,两个向量坐标形式的运算,属于基础题,着重考查了推理与运算能力.21、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解题分析】

(Ⅰ)可以求其反面,一个红球都没有,求出其概率,然后求取出的1个球中至少有一个红球的概率,从而求解;(Ⅱ)可以记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色球”为事件C,求出事件B和C的概率,从而求出1个球得分之和恰为1分的概率;(Ⅲ)ξ可能的取值为0,1,2,1,分别求出其概率【题目详解】解:(Ⅰ)取出的1个球中至少有一个红球的概率:(1分)(Ⅱ)记“取出1个红色球,2个白色球”为事

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论