版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西陆川县中学数学高二下期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线E:上的四点A,B,C,D满足,若直线AD的斜率与直线AB的斜率之积为2,则双曲线C的离心率为A. B. C. D.2.若函数f(x)的导数为f′(x)=-sinx,则函数图像在点(4,f(4))处的切线的倾斜角为()A.90°B.0°C.锐角D.钝角3.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使得α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,m,使得l//α,l//β,m//α,m//β其中,可以判定α与β平行的条件有()A.1个B.2个C.3个D.4个4.已知函数的定义域为,若对于,分别为某三角形的三边长,则称为“三角形函数”.给出下列四个函数:①②③④.其中为“三角形函数”的个数是()A. B. C. D.5.若动点与两定点,的连线的斜率之积为常数,则点的轨迹一定不可能是()A.除两点外的圆 B.除两点外的椭圆C.除两点外的双曲线 D.除两点外的抛物线6.已知点,则向量在方向上的投影为()A. B. C. D.7.已知定义在上的函数的导函数为,且,若存在实数,使不等式对于任意恒成立,则实数的取值范围是()A. B. C. D.8.根据中央对“精准扶贫”的要求,某市决定派7名党员去甲、乙、丙三个村进行调研,其中有4名男性党员,3名女性党员现从中选3人去甲村若要求这3人中既有男性,又有女性,则不同的选法共有()A.35种 B.30种 C.28种 D.25种9.已知曲线与恰好存在两条公切线,则实数的取值范围为()A. B. C. D.10.从某大学中随机选取8名女大学生,其身高(单位:)与体重(单位:)数据如下表:1651651571701751651551704857505464614359若已知与的线性回归方程为,那么选取的女大学生身高为时,相应的残差为()A. B.0.96 C.63.04 D.11.已知命题,则为A. B.C. D.12.已知f(x)为偶函数,且当x∈[0,2)时,f(x)=2sinx,当x∈[2,+∞)时,f(x)=log2x,则等于()A.-+2 B.1C.3 D.+2二、填空题:本题共4小题,每小题5分,共20分。13.正六棱柱相邻两个侧面所成的二面角的大小为________14.观察下列各式:,,,,由此可猜想,若,则__________.15.设是奇函数的导函数,,当时,,则使成立的的取值范围是________.16.曲线在点处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在长方体中,,,,是的中点.(1)求四棱锥的体积;(2)求异面直线与所成角的大小(结果用反三角形函数值表示).18.(12分)已知二项式展开式中的第7项是常数项.(1)求;(2)求展开式中有理项的个数.19.(12分)2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?对服务好评对服务不满意合计对商品好评140对商品不满意10合计200(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.①求随机变量X的分布列;②求X的数学期望和方差.附:K2P(K2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.82820.(12分)已知中,三个内角,,所对的边分别为,,,满足.(1)求;(2)若,的面积为,求,的值.21.(12分)某小组10名学生参加的一次数学竞赛的成绩分别为:92、77、75、90、63、84、99、60、79、85,求总体平均数μ、中位数m、方差σ2和标准差σ;(列式并计算,结果精确到0.1)22.(10分)已知函数在处取得极大值为9.(1)求,的值;(2)求函数在区间上的最值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】很明显,A,B,C,D四点组成平行四边形ABDC,如图所示,设,则:,点A在双曲线上,则:,据此可得:,结合可得双曲线的离心率为.本题选择A选项.点睛:求双曲线离心率或离心率范围的两种方法:一种是直接建立e的关系式求e或e的范围;另一种是建立a,b,c的齐次关系式,将b用a,e表示,令两边同除以a或a2化为e的关系式,进而求解.2、C【解题分析】,函数f(x)的图像在点(4,f(4))处的切线的倾斜角为锐角。3、B【解题分析】试题分析:直线与平面的位置关系,平面与平面的位置关系,对选项进行逐一判断,确定正确选项即可.:①α与β平行.此时能够判断①存在平面γ,使得α,②存在平面γ,使得α,β都垂直于γ;可以判定α与β平行,如正方体的底面与相对的侧面.也可能α与β不平行.②不正确.③不能判定α与β平行.如α面内不共线的三点不在β面的同一侧时,此时α与β相交;④可以判定α与β平行.∵可在α面内作l'∥l,m'∥m,则l'与考点:平面与平面平行的性质;平面与平面平行的判定;平面与平面垂直的判定.4、B【解题分析】
根据构成三角形条件,可知函数需满足,由四个函数解析式,分别求得其值域,即可判断是否满足不等式成立.【题目详解】根据题意,对于,分别为某三角形的三边长,由三角形性质可知需满足:对于①,,如当时不能构成三角形,所以①不是“三角形函数”;对于②,,则,满足,所以②是“三角形函数”;对于③,,则,当时不能构成三角形,所以③不是“三角形函数”;对于④,,由指数函数性质可得,满足,所以④是“三角形函数”;综上可知,为“三角形函数”的有②④,故选:B.【题目点拨】本题考查了函数新定义的综合应用,函数值域的求法,三角形构成的条件应用,属于中档题.5、D【解题分析】
根据题意可分别表示出动点与两定点的连线的斜率,根据其之积为常数,求得和的关系式,对的范围进行分类讨论,分别讨论且和时,可推断出点的轨迹.【题目详解】因为动点与两定点,的连线的斜率之积为常数,所以,整理得,当时,方程的轨迹为双曲线;当时,且方程的轨迹为椭圆;当时,点的轨迹为圆,抛物线的标准方程中,或的指数必有一个是1,故点的轨迹一定不可能是抛物线,故选D.【题目点拨】本题主要考查直接法求轨迹方程、点到直线的距离公式及三角形面积公式,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.本题就是利用方法①求动点的轨迹方程的.6、A【解题分析】
,,向量在方向上的投影为,故选A.7、C【解题分析】
对函数求导,分别求出和的值,得到,利用导数得函数的最小值为1,把存在实数,使不等式对于任意恒成立的问题转化为对于任意恒成立,分离参数,分类讨论大于零,等于零,小于零的情况,从而得到的取值范围。【题目详解】由题可得,分别把和代入与中得到,解得:;,,即当时,,则在上单调递减;当时,,则在上单调递增;要存在实数,使不等式对于任意恒成立,则不等式对于任意恒成立,即不等式对于任意恒成立;(1)当时,显然不等式不成立,舍去;(2)当时,不等式对于任意恒成立转化为对于任意恒成立,即,解得:;(3)当时,不等式对于任意恒成立转化为对于任意恒成立,即,解得:;综述所述,实数的取值范围是故答案选C【题目点拨】本题考查函数解析式的求法,利用导数求函数最小值,分类参数法,考查学生转化的思想,分类讨论的能力,属于中档题。8、B【解题分析】
首先算出名党员选名去甲村的全部情况,再计算出全是男性党员和全是女性党员的情况,即可得到既有男性,又有女性的情况.【题目详解】从名党员选名去甲村共有种情况,名全是男性党员共有种情况,名全是女性党员共有种情况,名既有男性,又有女性共有种情况.故选:B【题目点拨】本题主要考查组合的应用,属于简单题.9、B【解题分析】
设切点分别为和(s,t),再由导数求得斜率相等,得到构造函数由导数求得参数的范围。【题目详解】的导数为的导数为设与曲线相切的切点为与曲线相切的切点为(s,t),则有公共切线斜率为又,即有,即为,即有则有即为令则,当时,递减,当时,递增,即有处取得极大值,也为最大值,且为由恰好存在两条公切线,即s有两解,可得a的取值范围是,故选B.【题目点拨】可导函数y=f(x)在处的导数就是曲线y=f(x)在处的切线斜率,这就是导数的几何意义,在利用导数的几何意义求曲线切线方程时,要注意区分“在某点处的切线”与“过某点的切线”,已知y=f(x)在处的切线是,若求曲线y=f(x)过点(m,n)的切线,应先设出切点,把(m,n)代入,求出切点,然后再确定切线方程.而对于切线相同,则分别设切点求出切线方程,再两直线方程系数成比例。10、B【解题分析】
将175代入线性回归方程计算理论值,实际数值减去理论数值得到答案.【题目详解】已知与的线性回归方程为当时:相应的残差为:故答案选B【题目点拨】本题考查了残差的计算,意在考查学生的计算能力.11、C【解题分析】分析:把全称改为特称,大于改为小于等于。详解:,故选C点睛:带全称、特称量词的否定,命题“,则成立”的否定:,则成立命题“,则成立”的否定:,则成立12、D【解题分析】
函数f(x)为偶函数,可得f(﹣)=f()再将其代入f(x)=2sinx,进行求解,再根据x∈[2,+∞)时f(x)=log2x,求出f(4),从而进行求解;【题目详解】∵函数f(x)为偶函数,∴f(﹣)=f(),∵当x∈[0,2)时f(x)=2sinx,∴f(x)=2sin=2×=;∵当x∈[2,+∞)时f(x)=log2x,∴f(4)=log24=2,∴=+2,故选:D.【题目点拨】此题主要考查函数值的求解问题,解题的过程中需要注意函数的定义域,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由正六棱柱的几何特征可得为正六棱柱相邻两个侧面所成的二面角的平面角,根据正六边形的内角计算即可.【题目详解】解:如图,由正六棱柱的几何特征可知,则为正六棱柱相邻两个侧面所成的二面角的平面角,.故答案为:.【题目点拨】本题考查二面角的求解,关键是要找到二面角的平面角,是基础题.14、.【解题分析】分析:观察下列式子,右边分母组成以为首项,为公差的对称数列,分子组成以为首项,以为公差的等差数列,即可得到答案.详解:由题意,,,,可得,所以.点睛:本题主要考查了归纳推理的应用,其中归纳推理的步骤是:(1)通过观察给定的式子,发现其运算的相同性或运算规律,(2)从已知的相同性或运算规律中推出一个明企鹅的一般性的题,着重考查了考生的推理与论证能力.15、【解题分析】设,则g(x)的导数为:,∵当x>0时,xf′(x)−f(x)>0,即当x>0时,g′(x)恒大于0,∴当x>0时,函数g(x)为增函数,∵f(x)为奇函数∴函数g(x)为定义域上的偶函数又∵=0,∵f(x)>0,∴当x>0时,,当x<0时,,∴当x>0时,g(x)>0=g(1),当x<0时,g(x)<0=g(−1),∴x>1或−1<x<0故使得f(x)>0成立的x的取值范围是(−1,0)∪(1,+∞),故答案为(−1,0)∪(1,+∞).点睛:构造函数法是在求解某些数学问题时,根据问题的条件或目标,构想组合一种新的函数关系,使问题在新函数下转化并利用函数的有关性质解决原问题是一种行之有效的解题手段.构造函数法解题是一种创造性思维过程,具有较大的灵活性和技巧性.在运用过程中,应有目的、有意识地进行构造,始终“盯住”要解决的目标.16、【解题分析】
求得的导数,可得切线的斜率和切点,由点斜式方程可得所求切线方程.【题目详解】解:的导数为,所以,即曲线在处的切线的斜率为1,即切点为,则切线方程为,即故答案为:.【题目点拨】本题考查导数的运用:求切线方程,考查直线方程的运用,以及方程思想和运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)先求出,由此能求出四棱锥的体积。(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角的大小。【题目详解】(1)在长方体中,,,,是的中点.,四棱锥的体积(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,,,,,,设异面直线与所成角为,则,异面直线与所成角为【题目点拨】本题考查了棱锥的体积公式,解题的关键是熟记棱锥体积公式,同时也考查了用空间直角坐标系求立体几何中异面直线所成的角,此题需要一定的计算能力,属于中档题。18、(1)(2)展开式中的有理项共有3项【解题分析】
(1)根据二项展开式的通项以及第项是常数项计算的值;(2)根据二项展开式的通项,考虑未知数的指数为整数的情况,然后判断有理项的项数.【题目详解】解:(1)二项式展开式的通项为第7项为常数项,(2)由(1)知,若为有理项,则为整数,为6的倍数,,共三个数,展开式中的有理项共有3项.【题目点拨】本题考查二项展开式的通项的应用,难度一般.二项展开式中的有理项的分析的主要依据是:未知数的指数为整数;二项展开式中的常数项的分析的主要依据是:未知数的指数为.19、(1)详见解析(2)①详见解析②E(X)=2110【解题分析】
(1)补充列联表,根据公式计算卡方值,进行判断;(2)(ⅰ)每次购物时,对商品和服务都好评的概率为710,且X的取值可以是0,1,2,3,x符合二项分布,按照二项分布的公式进行计算即可得到相应的概率值;(ⅱ)按照二项分布的期望和方差公式计算即可【题目详解】(1)由题意可得关于商品和服务评价的2×2列联表:对服务好评对服务不满意合计对商品好评14040180对商品不满意101020合计15050200则K2由于7.407<7.879,则不可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关.(2)(ⅰ)每次购物时,对商品和服务都好评的概率为710且X的取值可以是0,1,2,3,则P(X=0)=(310P(X=2)=C32故X的分布列为X0123P27189441343(ⅱ)由于X~B(3,710),则E(X)=3×710【题目点拨】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地铁防水保温施工协议
- 生态园区物业管理人员聘用合同
- 车辆行驶证补办流程
- 城市建设保险总价承包合同
- 垃圾处理项目报名表
- 餐饮美食街门面租赁合同
- 农业观光园土地复垦项目招投标
- 医院建筑小青瓦安装合同
- 私募基金财务总监聘用合同
- 工程项目电梯供应合同
- 中石油-细节管理手册 03
- 柿子品种介绍PPT课件
- 全国重点文物保护单位保护项目安防消防防雷计划书
- 内镜清洁消毒登记表格模板
- 护士对预防患者跌倒的问卷调查表
- 道路开口施工方案
- 天然气脱硫(课堂运用)
- 幼儿园教师师德师风考核表(共2页)
- 城镇职工医疗保险运行中的问题分析及措施
- 静物构图(课堂PPT)
- 二年级数学上册 第三单元 角的初步认识复习课课件 青岛版
评论
0/150
提交评论