广州顺德区2024届数学高二第二学期期末预测试题含解析_第1页
广州顺德区2024届数学高二第二学期期末预测试题含解析_第2页
广州顺德区2024届数学高二第二学期期末预测试题含解析_第3页
广州顺德区2024届数学高二第二学期期末预测试题含解析_第4页
广州顺德区2024届数学高二第二学期期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广州顺德区2024届数学高二第二学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.不等式无实数解,则的取值范围是()A. B.C. D.2.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量().A.70 B.90 C.40 D.603.已知定义在上的函数与函数有相同的奇偶性和单调性,则不等式的解集为()A. B. C. D.4.曲线的极坐标方程化为直角坐标为()A. B.C. D.5.已知随机变量,若,则分别是()A.6和5.6 B.4和2.4 C.6和2.4 D.4和5.66.设函数的定义域为R,满足,且当时.则当,的最小值是()A. B. C. D.7.下列表格可以作为ξ的分布列的是()A.B.C.D.8.函数的零点个数为()A.0 B.1 C.2 D.39.已知函数,为的导函数,则的值为()A.0 B.1 C. D.10.已知的展开式中的系数为,则()A.1 B. C. D.11.设函数f(x),g(x)在[A,B]上均可导,且f′(x)<g′(x),则当A<x<B时,有()A.f(x)>g(x)B.f(x)+g(A)<g(x)+f(A)C.f(x)<g(x)D.f(x)+g(B)<g(x)+f(B)12.的展开式中,系数最小的项为()A.第6项 B.第7项 C.第8项 D.第9项二、填空题:本题共4小题,每小题5分,共20分。13.若实数,满足约束条件,则的最大值是.14.某产品发传单的费用x与销售额y的统计数据如表所示:发传单的费用x万元1245销售额y万元10263549根据表可得回归方程,根据此模型预报若要使销售额不少于75万元,则发传单的费用至少为_________万元.15.在棱长为的正方体中,是棱的中点,则到平面的距离等于_____.16.若的展开式中,奇数项的系数之和为-121,则n=___________。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点为椭圆上一点.(1)求椭圆C的方程;(2)已知两条互相垂直的直线,经过椭圆的右焦点,与椭圆交于四点,求四边形面积的的取值范围.18.(12分)已知函数,.(1)当时,方程在区间内有唯一实数解,求实数的取值范围;(2)对于区间上的任意不相等的实数、,都有成立,求的取值范围.19.(12分)在一次考试中某班级50名学生的成绩统计如表,规定75分以下为一般,大于等于75分小于85分为良好,85分及以上为优秀.经计算样本的平均值,标准差.为评判该份试卷质量的好坏,从其中任取一人,记其成绩为,并根据以下不等式进行评判①;②;③评判规则:若同时满足上述三个不等式,则被评为优秀试卷;若仅满足其中两个不等式,则被评为合格试卷;其他情况,则被评为不合格试卷.(1)试判断该份试卷被评为哪种等级;(2)按分层抽样的方式从3个层次的学生中抽出10名学生,再从抽出的10名学生中随机抽出4人进行学习方法交流,用随机变量表示4人中成绩优秀的人数,求随机变量的分布列和数学期望.20.(12分)数列满足,等比数列满足.(1)求数列的通项公式;(2)设,求数列的前项和.21.(12分)已知向量,函数.(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值.22.(10分)已知某厂生产的电子产品的使用寿命(单位:小时)服从正态分布,且,.(1)现从该厂随机抽取一件产品,求其使用寿命在的概率;(2)现从该厂随机抽取三件产品,记抽到的三件产品使用寿命在的件数为,求的分布列和数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

利用绝对值不等式的性质,因此得出的范围,再根据无实数解得出的范围。【题目详解】解:由绝对值不等式的性质可得,,即.因为无实数解所以,故选C。【题目点拨】本题考查了绝对值不等式的性质,利用绝对值不等式的性质解出变量的范围是解决问题的关键。2、B【解题分析】

用除以甲的频率,由此求得样本容量.【题目详解】甲的频率为,故,故选B.【题目点拨】本小题主要考查分层抽样的知识,考查频率与样本容量的计算,属于基础题.3、D【解题分析】

先判断的奇偶性及单调性,即可由为奇函数性质及单调性解不等式,结合定义域即可求解.【题目详解】函数,定义域为;则,即为奇函数,,函数在内单调递减,由复合函数的单调性可知在内单调递减,由题意可得函数为在内单调递减的奇函数,所以不等式变形可得,即,则,解不等式组可得,即,故选:D.【题目点拨】本题考查了函数奇偶性及单调性的判断,对数型复合函数单调性性质应用,由奇偶性及单调性解抽象不等式,注意定义域的要求,属于中档题.4、B【解题分析】

利用直角坐标与极坐标的互化公式,即可得到答案.【题目详解】由曲线的极坐标方程,两边同乘,可得,再由,可得:,所以曲线的极坐标方程化为直角坐标为故答案选B【题目点拨】本题考查把极坐标转化为直角坐标方程的方法,熟练掌握直角坐标与极坐标的互化公式是解题的关键,属于基础题.5、B【解题分析】分析:根据变量ξ~B(10,0.4)可以根据公式做出这组变量的均值与方差,随机变量η=8﹣ξ,知道变量η也符合二项分布,故可得结论.详解:∵ξ~B(10,0.4),∴Eξ=10×0.4=4,Dξ=10×0.4×0.6=2.4,∵η=8﹣ξ,∴Eη=E(8﹣ξ)=4,Dη=D(8﹣ξ)=2.4故选:B.点睛:本题考查变量的均值与方差,均值反映数据的平均水平,而方差反映数据的波动大小,属于基础题.方差能够说明数据的离散程度,期望说明数据的平均值,从选手发挥稳定的角度来说,应该选择方差小的.6、D【解题分析】

先求出函数在区间上的解析式,利用二次函数的性质可求出函数在区间上的最小值.【题目详解】由题意可知,函数是以为周期的周期函数,设,则,则,即当时,,可知函数在处取得最小值,且最小值为,故选D.【题目点拨】本题考查函数的周期性以及函数的最值,解决本题的关键就是根据周期性求出函数的解析式,并结合二次函数的基本性质求解,考查计算能力,属于中等题.7、C【解题分析】

根据分布列的性质以及各概率之和等于1,能求出正确结果.【题目详解】根据分布列的性质以及各概率之和等于1,在中,各概率之和为,故错误;在中,,故错误;在中,满足分布列的性质以及各概率之和等于1,故正确;在中,,故错误.故选:.【题目点拨】本题考查离散型随机变量的分布列的判断,考查分布列的性质以及各概率之和等于1等基础知识,考查运用求解能力,是基础题.8、C【解题分析】,如图,由图可知,两个图象有2个交点,所以原函数的零点个数为2个,故选C.9、D【解题分析】

根据题意,由导数的计算公式求出函数的导数,将代入导数的解析式,计算可得答案.【题目详解】解:根据题意,,则,则;故选:.【题目点拨】本题考查导数的计算,关键是掌握导数的计算公式,属于基础题.10、D【解题分析】

由题意可得展开式中x2的系数为前一项中常数项与后一项x的二次项乘积,加上第一项x的系数与第二项x的系数乘积的和,由此列方程求得a的值.【题目详解】根据题意知,的展开式的通项公式为,∴展开式中含x2项的系数为a=,即10﹣5a=,解得a=.故选D.【题目点拨】本题主要考查了二项式定理的应用问题,利用二项式展开式的通项公式是解决此类问题的关键.11、B【解题分析】试题分析:设F(x)=f(x)-g(x),∵在[A,B]上f'(x)<g'(x),F′(x)=f′(x)-g′(x)<0,∴F(x)在给定的区间[A,B]上是减函数.∴当x>A时,F(x)<F(A),即f(x)-g(x)<f(A)-g(A)即f(x)+g(A)<g(x)+f(A)考点:利用导数研究函数的单调性12、C【解题分析】由题设可知展开式中的通项公式为,其系数为,当为奇数时展开式中项的系数最小,则,即第8项的系数最小,应选答案C。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:画出不等式组表示的平面区域为下图中的阴影部分,看作两点,连线的斜率,根据上图可求最大值为考点:线性规划。14、1.【解题分析】

计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到,进而构造不等式,可得答案.【题目详解】由已知可得:,,代入,得,令解得:,故答案为:1.【题目点拨】本题考查的知识点是线性回归方程,难度不大,属于基础题.在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的,线性回归方程得到的预测值是预测变量的估计值,不是准确值.15、【解题分析】

由题意画出正方体,求出的面积,利用等体积法求解到平面的距离.【题目详解】由题意,画出正方体如图所示,,点是中点,所以,在中,,,,所以,,所以,设到平面的距离为,由,得,解得,.故答案为:【题目点拨】本题主要考查求点到平面距离的方法、棱锥体积公式、余弦定理和三角形面积公式的应用,考查等体积法的应用和学生的转化和计算能力,属于中档题.16、5【解题分析】

令和,作和即可得到奇数项的系数和,从而构造出方程解得结果.【题目详解】令得:令得:奇数项的系数和为:,解得:本题正确结果:【题目点拨】本题考查二项式系数的性质应用问题,关键是采用赋值的方式快速得到系数和.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)由题意可得,解得进而得到椭圆的方程;(2)设出直线l1,l2的方程,直线和椭圆方程联立,运用韦达定理和弦长公式,分别求得|AB|,|MN|,再由四边形的面积公式,化简整理计算即可得到取值范围.【题目详解】(1)由题意可得,解得a2=4,b2=3,c2=1故椭圆C的方程为;(2)当直线l1的方程为x=1时,此时直线l2与x轴重合,此时|AB|=3,|MN|=4,∴四边形AMBN面积为S|AB|•|MN|=1.设过点F(1,0)作两条互相垂直的直线l1:x=ky+1,直线l2:xy+1,由x=ky+1和椭圆1,可得(3k2+4)y2+1ky﹣9=0,判别式显然大于0,y1+y2,y1y2,则|AB|••,把上式中的k换为,可得|MN|则有四边形AMBN面积为S|AB|•|MN|••,令1+k2=t,则3+4k2=4t﹣1,3k2+4=3t+1,则S,∴t>1,∴01,∴y=﹣()2,在(0,)上单调递增,在(,1)上单调递减,∴y∈(12,],∴S∈[,1)故四边形PMQN面积的取值范围是【题目点拨】本题考查直线和椭圆的位置关系,同时考查直线椭圆截得弦长的问题,以及韦达定理是解题的关键,属于难题.18、(1)(2)或【解题分析】

(1)由得,即与的图象在上有唯一交点.设,利用导数讨论出函数的单调性,得出答案.

(2)不妨设,当时,,则在上单调递增,则转化为,即在上单调递减,所以恒成立,当时,即在上单调递增,从而可求答案.【题目详解】【题目详解】(1)解:由,得,设,,则问题等价于与的图象在上有唯一交点,∵,∴时,,函数单调递增,时,,函数单调递减,∵,且时,,∴.(2)解:,在上单调递增.不妨设,当时,,则在上单调递增,,,∴可化为,∴,设,即,∵在上单调递减,∴恒成立,即在上恒成立,∵,∴,当时,,,∴可化为,∴,设,即,∵在上单调递增,∴恒成立,即在上恒成立.∴,∴,综上所述:或.【题目点拨】本题考查根据方程根的个数求参数范围和构造函数利用函数的单调性求参数范围,属于中档题.19、(1)该份试卷应被评为合格试卷;(2)见解析【解题分析】

(1)根据频数分布表,计算,,的值,由此判断出“该份试卷应被评为合格试卷”.(2)利用超几何分布分布列计算公式,计算出分布列,并求得数学期望.【题目详解】(1),,,因为考生成绩满足两个不等式,所以该份试卷应被评为合格试卷.(2)50人中成绩一般、良好及优秀的比例为,所以所抽出的10人中,成绩优秀的有3人,所以的取值可能为0,1,2,3;;;.所以随机变的分布列为0123故.【题目点拨】本小题主要考查正态分布的概念,考查频率的计算,考查超几何分布的分布列以及数学期望的计算,属于中档题.20、(1),;(2).【解题分析】分析:(1)由已知可得数列为等差数列,根据等差数列的通项公式求得;再求出和,进而求出公比,代入等比数列的通项公式,即可求得数列的通项公式;(2)利用错位相减法即可求出数列的前项和.详解:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论