安徽省合肥四十五中学2023年数学九上期末复习检测试题含解析_第1页
安徽省合肥四十五中学2023年数学九上期末复习检测试题含解析_第2页
安徽省合肥四十五中学2023年数学九上期末复习检测试题含解析_第3页
安徽省合肥四十五中学2023年数学九上期末复习检测试题含解析_第4页
安徽省合肥四十五中学2023年数学九上期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥四十五中学2023年数学九上期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.方程x2﹣2x﹣4=0的根的情况()A.只有一个实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.没有实数根2.下列说法不正确的是()A.所有矩形都是相似的B.若线段a=5cm,b=2cm,则a:b=5:2C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cmD.四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段3.若,设,,,则、、的大小顺序为()A. B. C. D.4.将抛物线先向左平移2个单位,再向下平移3个单位,得到的新抛物线的表达式为()A. B.C. D.5.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A. B. C. D.6.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=28º,则∠P的度数是()A.50º B.58ºC.56º D.55º7.已知△ABC∽△DEF,∠A=85°;∠F=50°,那么cosB的值是()A.1 B. C. D.8.口袋中有2个红球和1个黑球,每次摸到后放回,两次都摸到红球的概率为()A. B. C. D.9.若将抛物线y=-x2先向左平移3个单位,再向下平移2个单位,得到新的抛物线,则新抛物线的表达式是(

)A. B.C. D.10.二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,则t的值为()A.0 B. C.1 D.211.如图,四边形ABCD是⊙O的内接四边形,AB=AD,若∠C=70º,则∠ABD的度数是()A.35º B.55º C.70º D.110º12.如图,与是位似图形,相似比为,已知,则的长()A. B. C. D.二、填空题(每题4分,共24分)13.下表是某种植物的种子在相同条件下发芽率试验的结果.种子个数100400900150025004000发芽种子个数92352818133622513601发芽种子频率0.920.880.910.890.900.90根据上表中的数据,可估计该植物的种子发芽的概率为________.14.函数的自变量的取值范围是.15.如图,点是双曲线在第二象限分支上的一个动点,连接并延长交另一分支于点,以为底作等腰,且,点在第一象限,随着点的运动点的位置也不断变化,但点始终在双曲线上运动,则的值为________.16.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.17.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.18.如图,已知⊙的半径为1,圆心在抛物线上运动,当⊙与轴相切时,圆心的坐标是___________________.三、解答题(共78分)19.(8分)如图,在的直角三角形中,,是直角边所在直线上的一个动点,连接,将绕点逆时针旋转到,连接,.(1)如图①,当点恰好在线段上时,请判断线段和的数量关系,并结合图①证明你的结论;(2)当点不在直线上时,如图②、图③,其他条件不变,(1)中结论是否成立?若成立,请结合图②、图③选择一个给予证明;若不成立,请直接写出新的结论.20.(8分)如图,在△ABC中,D为BC边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC的长21.(8分)为支持大学生勤工俭学,市政府向某大学生提供了万元的无息贷款用于销售某种自主研发的产品,并约定该学生用经营的利润逐步偿还无息贷款,已知该产品的生产成本为每件元.每天还要支付其他费用元.该产品每天的销售量件与销售单价元关系为.(1)设每天的利润为元,当销售单价定为多少元时,每天的利润最大?最大利润为多少元?注:每天的利润每天的销售利润一每天的支出费用(2)若销售单价不得低于其生产成本,且销售每件产品的利润率不能超过,则该学生最快用多少天可以还清无息贷款?22.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?23.(10分)解方程:(1)3(2x+1)2=108(2)3x(x-1)=2-2x(3)x2-6x+9=(5-2x)2(4)x(2x-4)=5-8x24.(10分)一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是事件;(2)求2个球颜色相同的概率.25.(12分)如图直角坐标系中,为坐标原点,抛物线交轴于点,过作轴,交抛物线于点,连结.点为抛物线上上方的一个点,连结,作垂足为,交于点.(1)求的长;(2)当时,求点的坐标;(3)当面积是四边形面积的2倍时,求点的坐标.26.解方程:2x2﹣5x﹣7=1.

参考答案一、选择题(每题4分,共48分)1、B【详解】Δ=b2-4ac=(-2)2-4×1×(-4)=20>0,所以方程有两个不相等的实数根.故选B.【点睛】一元二次方程根的情况:(1)b2-4ac>0,方程有两个不相等的实数根;(2)b2-4ac=0,方程有两个相等的实数根;(3)b2-4ac<0,方程没有实数根.注:若方程有实数根,那么b2-4ac≥0.2、A【解析】根据相似多边形的性质,矩形的性质,成比例线段,黄金分割判断即可.【详解】解:A.所有矩形对应边的比不一定相等,所以不一定都是相似的,A不正确,符合题意;B.若线段a=5cm,b=2cm,则a:b=5:2,B正确,不符合题意;C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cm,C正确,不符合题意;D.∵1:2=2:4,∴四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段,D正确,不符合题意;故选:A.【点睛】本题考查的是相似多边形的性质,矩形的性质,成比例线段,黄金分割,掌握它们的概念和性质是解题的关键.3、B【分析】根据,设x=1a,y=7a,z=5a,进而代入A,B,C分别求出即可.【详解】解:∵,设x=1a,y=7a,z=5a,

∴=,

==1,

==1.

∴A<B<C.

故选:B.【点睛】本题考查了比例的性质,根据比例式用同一个未知数得出x,y,z的值进而求出是解题的关键.4、D【分析】根据抛物线的平移规律:左加右减,上加下减,即可得解.【详解】由题意,得平移后的抛物线为故选:D.【点睛】此题主要考查抛物线的平移规律,熟练掌握,即可解题.5、A【分析】先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=1x都在直线y=kx+b的上方,当x<1时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<1x的解集.【详解】设A点坐标为(x,1),把A(x,1)代入y=1x,得1x=1,解得x=1,则A点坐标为(1,1),所以当x>1时,1x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(1,0),∴x<1时,kx+b>0,∴不等式0<kx+b<1x的解集为1<x<1.故选A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6、C【分析】利用切线长定理可得切线的性质的PA=PB,,则,,再利用互余计算出,然后在根据三角形内角和计算出的度数.【详解】解:∵PA,PB是⊙O的切线,A,B为切点,∴PA=PB,,∴在△ABP中∴故选:C.【点睛】本题主要考查了切线长定理以及切线的性质,熟练掌握切线长定理以及切线性质是解题的关键.7、C【分析】由题意首先根据相似三角形求得∠B的度数,然后根据特殊角的三角函数值确定正确的选项即可.【详解】解:△ABC∽△DEF,∠A=85°,∠F=50°,∴∠C=∠F=50°,∴∠B=180°-∠A-∠C=180°-85°-50°=45°,∴cosB=cos45°=.故选:C.【点睛】本题主要考查相似三角形的性质以及三角函数相关,解题的关键是熟练掌握相似三角形的对应角相等.8、D【分析】根据题意画出树形图即可求出两次都摸到红球的概率,进而得出选项.【详解】解:设红球为1,黑球为2,画树形图得:由树形图可知:两次都摸到红球的概率为.故选:D.【点睛】本题考查用列表法与树状图法求随机事件的概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9、A【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】∵将抛物线先向左平移3个单位,再向下平移2个单位,∴y=-(x+3)2-2.故答案为A.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k

(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.10、C【解析】根据二次函数的对称轴方程计算.【详解】解:∵二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,∴﹣=0,解得,t=1,故选:C.【点睛】本题考查二次函数对称轴性质,熟练掌握对称轴的公式是解题的关键.11、A【分析】由圆内接四边形的性质,得到∠BAD=110°,然后由等腰三角形的性质,即可求出∠ABD的度数.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵∠C=70°,∴∠BAD=110°,∵AB=AD,∴.故选:A.【点睛】本题考查了圆内接四边形的性质,等腰三角形的性质,三角形内角和定理,解题的关键是熟练掌握所学的性质,正确得到∠BAD=110°.12、B【分析】根据位似变换的定义、相似三角形的性质列式计算即可.【详解】∵△ABC与△DEF是位似图形,相似比为2:3,

∴△ABC∽△DEF,

∴,即,

解得,DE=故选:B.【点睛】本题考查的是位似变换,掌握位似是相似的特殊形式,位似比等于相似比是解题的关键.二、填空题(每题4分,共24分)13、0.1【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.1左右,从而得到结论.【详解】由表格可得,当实验次数越来越多时,发芽种子频率稳定在0.1,符合用频率佔计概率,∴种子发芽概率为0.1.故答案为:0.1.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14、x>1【详解】解:依题意可得,解得,所以函数的自变量的取值范围是15、2【分析】作轴于D,轴于E,连接OC,如图,利用反比例函数的性质得到点A与点B关于原点对称,再根据等腰三角形的性质得,,接着证明∽,根据相似三角形的性质得,利用k的几何意义得到,然后解绝对值方程可得到满足条件的k的值.【详解】解:作轴于D,轴于E,连接OC,如图,过原点,点A与点B关于原点对称,,为等腰三角形,,,,,,,,∽,,而,,即,而,.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即双曲线是关于原点对称的,两个分支上的点也是关于原点对称;在图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值也考查了等腰三角形的性质和相似三角形的判定与性质.16、【解析】分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是.故答案为:.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17、【解析】判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.【详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.故答案为.【点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.18、或或或【分析】根据圆与直线的位置关系可知,当⊙与轴相切时,P点的纵坐标为1或-1,把1或-1代入到抛物线的解析式中求出横坐标即可.【详解】∵⊙的半径为1,∴当⊙与轴相切时,P点的纵坐标为1或-1.当时,,解得,∴此时P的坐标为或;当时,,解得,∴此时P的坐标为或;故答案为:或或或.【点睛】本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x轴相切找到点P的纵坐标的值是解题的关键.三、解答题(共78分)19、(1),证明见解析;(2)图②、图③结论成立,证明见解析.【分析】(1)利用等边三角形的性质以及等腰三角形的判定解答即可;(2)过点E作EF⊥AB,垂足为F,证得△ADC≌△AEF,结合直角三角形中30度的角所对的直角边是斜边的一半解决问题;【详解】(1).证明如下:∵,,∴为等边三角形,∴,.∵,,∴,∴,∴,∴.(2)图②、图③结论成立.图②证明如下:如图②,过点作,垂足为.在中,,∴,∴,∴,∴.又,,∴,∴在中,,∴,∴,∴.∵为等边三角形,,∴.图③证明如下:如图③,过点作,垂足为.在中,,∴,∴,∴,∴.又,,∴,∴在中,,∴,∴,∴.∵为等边三角形,,∴.【点睛】本题考查等边三角形的性质,三角形全等的判定与性质,等腰三角形的判定与性质等知识点,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20、【分析】根据相似三角形的判定定理可得△CAD∽△CBA,列出比例式即可求出AC.【详解】解:∵CD=4,BD=2,∴BC=CD+BD=6∵∠CAD=∠B,∠C=∠C∴△CAD∽△CBA∴∴解得:或(舍去)即.【点睛】此题考查的是相似三角形的判定及性质,掌握有两组对应角相等的两个三角形相似和相似三角形的对应边成比例是解决此题的关键.21、(1)当销售单价定为25元时,日销售利润最大为200元;(2)该生最快用100天可以还清无息贷款.【分析】(1)计算利润=销量×每件的利润-支付的费用,化为顶点式,可得结论;(2)先得出每日利润的最大值,即可求解.【详解】(1)∵<0,∴当x=25时,日利润最大,为200元,∴当销售单价定为25元时,日销售利润最大为200元;(2)由题意得:,解得:,,∵<0,∴抛物线开口向下,当时,随的值增大而增大,

∴当x=15时,日利润最大为100元,∵10000100=100,∴该生最快用100天可以还清无息贷款.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).22、(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.试题解析:(1)由题意得,==;(2)P===,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得=6000,解得,,∵抛物线P=的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.23、(1)x1=,x2=;(2)x1=1,x2=;(3)x1=,x2=2;(4)x1=,x2=【分析】(1)两边同时除以3,再用直接开平方法解得;(2)移项,方程左边可以提取公因式(x-1),利用因式分解法求解得;(3)先把方程化为两个完全平式的形式,再用因式分解法求出x的值即可.(4)方程整理为一般形式,计算出根的判别式的值大于0,代入求根公式即可求出解;【详解】解:(1)两边同时除以3得:(2x+1)2=36,开平方得:2x+1=±6,x1=,x2=;(2)移项得,3x(x-1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论