




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆市江津区七校数学九年级第一学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B. C.π﹣4 D.2.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将它绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,恰好使B′C′∥AB,A'C′与AB交于点E,则A′E的长为()A.3 B.3.2 C.3.5 D.3.63.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个 B.3个 C.2个 D.1个4.用配方法解方程2x2-x-2=0,变形正确的是()A. B.=0 C. D.5.下列事件的概率,与“任意选个人,恰好同月过生日”这一事件的概率相等的是()A.任意选个人,恰好生肖相同 B.任意选个人,恰好同一天过生日C.任意掷枚骰子,恰好朝上的点数相同 D.任意掷枚硬币,恰好朝上的一面相同6.我市组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. B. C. D.7.如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是()A.30°B.45°C.55°D.60°8.如图,二次函数y=ax2+bx+c的图象与x轴相交于A、B两点,C(m,﹣3)是图象上的一点,且AC⊥BC,则a的值为()A.2 B. C.3 D.9.如图,正方形的面积为16,是等边三角形,点在正方形内,在对角线上有一点,使的和最小,则这个最小值为()A.2 B.4 C.6 D.810.如图,BD是⊙O的直径,点A、C在⊙O上,,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°11.下列四个几何体中,主视图为圆的是()A. B. C. D.12.下列方程中,是一元二次方程的是()A. B.C. D.二、填空题(每题4分,共24分)13.方程x(x﹣5)=0的根是_____.14.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为_____.15.如图,点,分别在线段,上,若,,,,则的长为________.16.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_____17.如图,在平面直角坐标系中,直角三角形的直角顶点与原点O重合,顶点A,B恰好分别落在函数,的图象上,则tan∠ABO的值为___________18.一家鞋店对上一周某品牌女鞋的销量统计如下:尺码(厘米)2222.52323.52424.525销量(双)12511731该店决定本周进货时,多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是___________.三、解答题(共78分)19.(8分)小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的1个扇形区域,且分别标有数字1,2,3,1.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.20.(8分)如图,一次函数y1=mx+n与反比例函数y2=(x>0)的图象分别交于点A(a,4)和点B(8,1),与坐标轴分别交于点C和点D.(1)求一次函数与反比例函数的解析式;(2)观察图象,当x>0时,直接写出y1>y2的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.21.(8分)小明、小亮两人用如图所示的两个分隔均匀的转盘做游戏:分别转动两个转盘,转盘停止后,将两个指针所指数字相加(若指针恰好停在分割线上,则重转一次).如果这两个数字之和小于8(不包括8),则小明获胜;否则小亮获胜。(1)利用列表法或画树状图的方法表示游戏所有可能出现的结果;(2)这个游戏对双方公平吗?请说明理由.22.(10分)如图,(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=20°,∠OAC=80°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2),请回答:∠ADB=°,AB=.(2)请参考以上思路解决问题:如图3,在四边形ABCD中,对角线AC、BD相交于点O,AC⊥AD,AO=6,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.23.(10分)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.24.(10分)如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.25.(12分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.26.如图,有一座圆弧形拱桥,它的跨度为,拱高为,当洪水泛滥到跨度只有时,就要采取紧急措施,若某次洪水中,拱顶离水面只有,即时,试通过计算说明是否需要采取紧急措施.
参考答案一、选择题(每题4分,共48分)1、A【分析】先证得三角形OBC是等腰直角三角形,通过解直角三角形求得BC和BC边上的高,然后根据S阴影=S扇形OBC-S△OBC即可求得.【详解】∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴△OBC的BC边上的高为:,∴∴S阴影=S扇形OBC-S△OBC=,故选:A.【点睛】本题考查了扇形的面积公式:(n为圆心角的度数,R为圆的半径).也考查了等腰直角三角形三边的关系和三角形的面积公式.2、D【解析】如图,过点D作DF⊥AB,可证四边形EFDC'是矩形,可得C'E=DF,通过证明△BDF∽△BAC,可得,可求DF=2.4=C'E,即可求解.【详解】如图,过点D作DF⊥AB,∵∠C=90°,AC=6,BC=8,∴AB==10,∵将Rt△ABC绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,∴AC=A'C'=6,∠C=∠C'=90°,CD=BD=4,∵AB∥C'B'∴∠A'EB=∠A'C'B'=90°,且DF⊥AB,∴四边形EFDC'是矩形,∴C'E=DF,∵∠B=∠B,∠DFB=∠ACB=90°,∴△BDF∽△BAC∴,∴∴DF=2.4=C'E,∴A'E=A'C'﹣C'E=6﹣2.4=3.6,故选:D.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知旋转的定义、矩形的性质及相似三角形的判定与性质.3、B【解析】试题解析:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有
,即b=,∴tan∠CAD=.故④不正确;故选B.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.4、D【解析】用配方法解方程2−x−2=0过程如下:移项得:,二次项系数化为1得:,配方得:,即:.故选D.5、A【分析】根据概率的意义对各选项分析判断即可得解.【详解】任选人,恰好同月过生日的概率为,A任选人,恰好生肖相同的概率为,B任选人,恰好同一天过生日的概率为,C任意掷枚骰子,恰好朝上的点数相同的概率为,D任意掷枚硬币,恰好朝上的一面相同的概率为.故选:A.【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.6、A【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)
共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,
所以两人恰好选择同一场馆的概率,故选:A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.7、D【解析】试题分析:∵OA=OC,∴∠A=∠ACO=30°,∵AB是⊙O的直径,∴∠BOC=2∠A=2×30°=60°.故选D.考点:圆周角定理.8、D【分析】在直角三角形ABC中,利用勾股定理AD2+DC2+CD2+BD2=AB2,即m2﹣m(x1+x2)+18+x1x2=0;然后根据根与系数的关系即可求得a的值.【详解】过点C作CD⊥AB于点D.∵AC⊥BC,∴AD2+DC2+CD2+BD2=AB2,设ax2+bx+c=0的两根分别为x1与x2(x1≤x2),∴A(x1,0),B(x2,0).依题意有(x1﹣m)2+9+(x2﹣m)2+9=(x1﹣x2)2,化简得:m2﹣m(x1+x2)+9+x1x2=0,∴m2m+90,∴am2+bn+c=﹣9a.∵(m,﹣3)是图象上的一点,∴am2+bm+c=﹣3,∴﹣9a=﹣3,∴a.故选:D.【点睛】本题是二次函数的综合试题,考查了二次函数的性质和图象,解答本题的关键是注意数形结合思想.9、B【分析】由于点B与点D关于AC对称,所以连接BE,与AC的交点即为F,此时,FD+FE=BE最小,而BE是等边三角形ABE的边,BE=AB,由正方形面积可得AB的长,从而得出结果.【详解】解:由题意可知当点P位于BE与AC的交点时,有最小值.设BE与AC的交点为F,连接BD,∵点B与点D关于AC对称∴FD=FB∴FD+FE=FB+FE=BE最小又∵正方形ABCD的面积为16∴AB=1∵△ABE是等边三角形∴BE=AB=1.故选:B.【点睛】本题考查的知识点是轴对称中的最短路线问题,解题的关键是弄清题意,找出相对应的相等线段.10、D【解析】试题分析:直接根据圆周角定理求解.连结OC,如图,∵=,∴∠BDC=∠BOC=∠AOB=×60°=30°.故选D.考点:圆周角定理.11、C【分析】首先依次判断每个几何体的主视图,然后即可得到答案.【详解】解:A、主视图是矩形,B、主视图是三角形,C、主视图为圆,D、主视图是正方形,故选:C.【点睛】本题考查了简单几何体的三视图,熟知这些简单几何体的三视图是解决此类问题的关键.12、B【解析】根据一元二次方程的定义进行判断即可.【详解】A.属于多项式,错误;B.属于一元二次方程,正确;C.未知数项的最高次数是2,但不属于整式方程,错误;D.属于整式方程,未知数项的最高次数是3,错误.故答案为:B.【点睛】本题考查了一元二次方程的性质以及定义,掌握一元二次方程的定义是解题的关键.二、填空题(每题4分,共24分)13、x1=0,x2=1【分析】根据x(x-1)=0,推出x=0,x-1=0,求出方程的解即可.【详解】解:x(x﹣1)=0,∴x=0,x﹣1=0,解得:x1=0,x2=1,故答案为x1=0,x2=1.【点睛】本题考查了解一元一次方程和解一元二次方程,关键是能把解一元二次方程转化成解一元一次方程.14、2.【解析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【详解】∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣2),∴当y=0时,0=(x﹣3)(x﹣2),解得:x2=3,x2=2.∵3﹣2=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.故答案为:2.【点睛】本题考查了抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.15、7.1【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:,,即,解得,,,故答案为:7.1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.16、70°或120°【分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【详解】①当点B落在AB边上时,∵,∴,∴,②当点B落在AC上时,在中,∵∠C=90°,,∴,∴,故答案为70°或120°.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.17、【分析】根据反比例函数的几何意义可得直角三角形的面积;根据题意可得两个直角三角形相似,而相似比就是直角三角形∆AOB的两条直角边的比,从而得出答案.【详解】过点A、B分别作AD⊥x轴,BE⊥x轴,垂足为D、E,∵顶点A,B恰好分别落在函数,的图象上∴又∵∠AOB=90°∴∠AOD=∠OBE∴∴则tan∠ABO=故本题答案为:.【点睛】本题考查了反比例函数,相似三角形和三角函数的综合题型,连接辅助线是解题的关键.18、众数【解析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为众数.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.熟练掌握均数、中位数、众数、方差的意义是解答本题的关键.三、解答题(共78分)19、(1);(2)该游戏公平.【分析】(1)根据概率公式直接计算即可;
(2)画树状图得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.【详解】解:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率=;(2)该游戏公平.理由如下:画树状图为:共有16种等可能的结果数,其中两次的数字都是奇数的结果数为1,所以小王胜的概率=;两次的数字都是偶数的结果数为1,所以小张胜的概率=,因为小王胜的概率与小张胜的概率相等,所以该游戏公平.【点睛】本题考查的知识点是游戏公平性,概率公式,树状图法,解题关键是熟练运用树状图法.20、(1)y1=﹣x+5,y2=;(2)2<x<1;(3)点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【分析】(1)先将点B代入反比例函数解析式中求出反比例函数的解析式,然后进一步求出A的坐标,再将A,B代入一次函数中求一次函数解析式即可;(2)根据图象和两函数的交点即可写出y1>y2的解集;(3)先求出C,D的坐标,从而求出CD,AD,OD的长度,然后分两种情况:当时,△COD∽△APD;当时,△COD∽△PAD,分别利用相似三角形的性质进行讨论即可.【详解】解:(1)把B(1,1)代入反比例函数中,则,解得∴反比例函数的关系式为,∵点A(a,4)在图象上,∴a==2,即A(2,4)把A(2,4),B(1,1)两点代入y1=mx+n中得解得:,所以直线AB的解析式为:y1=﹣x+5;反比例函数的关系式为y2=,(2)由图象可得,当x>0时,y1>y2的解集为2<x<1.(3)由(1)得直线AB的解析式为y1=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==∵A(2,4),∴AD==4设P点坐标为(a,0),由题可知,点P在点D左侧,则PD=10﹣a由∠CDO=∠ADP可得①当时,,如图1此时,∴,解得a=2,故点P坐标为(2,0)②当时,,如图2当时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【点睛】本题主要考查反比例函数与一次函数的综合,相似三角形的判定与性质,掌握待定系数法和相似三角形的判定及性质是解题的关键.21、(1)12种情况;(2)不公平,小亮获胜概率大【分析】(1)依据题意先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可【详解】解:(1)利用列表法的方法表示游戏所有可能出现的结果如下表:∴共有12种情况;(2)游戏不公平P(小明获胜)=,P(小亮获胜)=,∴不公平,小亮获胜概率大.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)80,8;(2)DC=8【分析】(1)根据平行线的性质可得∠ADB=∠OAC=80°,即可证明△BOD∽△COA,可得,求出AD的长度,再根据角的和差关系得∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,即可得出AB=AD=8.(2)过点B作BE∥AD交AC于点E,通过证明△AOD∽△EOB,可得,根据线段的比例关系,可得AB=2BE,根据勾股定理求出BE的长度,再根据勾股定理求出DC的长度即可.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=80°,∵∠BOD=∠COA,∴△BOD∽△COA,∴∵AO=6,∴OD=AO=2,∴AD=AO+OD=6+2=8,∵∠BAD=20°,∠ADB=80°,∴∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,∴AB=AD=8,故答案为:80,8;(2)过点B作BE∥AD交AC于点E,如图3所示:∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°,∵∠AOD=∠EOB,∴△AOD∽△EOB,∴∵BO:OD=1:3,∴∵AO=6,∴EO=AO=2,∴AE=AO+EO=6+2=8,∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE,在Rt△AEB中,BE2+AE2=AB2,即(8)2+BE2=(2BE)2,解得:BE=8,∴AB=AC=16,AD=3BE=24,在Rt△CAD中,AC2+AD2=DC2,即162+242=DC2,解得:DC=8.【点睛】本题考查了三角形的综合问题,掌握平行线的性质、相似三角形的性质以及判定定理、勾股定理是解题的关键.23、(1)a=4,k=8;(2)①E(5,);②满足条件的m的值为4或5或2.【分析】(1)把点A坐标代入直线AB的解析式中,求出a,求出点B坐标,再将点B坐标代入反比例函数解析式中求出k;(2)①确定出点D(5,4),得到求出点E坐标;②先表示出点C,D坐标,再分三种情况:当BC=CD时,判断出点B在AC的垂直平分线上,即可得出结论,当BC=BD时,表示出BC,用BC=BD建立方程求解即可得出结论,当BD=AB时,m=AB,根据勾股定理计算即可.【详解】解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)代入反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,);②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),△BCD是等腰三形,当BC=CD时,BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓储物流场地租赁合同范文
- 博物馆展品贷款合同
- 江西省会昌县市级名校2024-2025学年第二学期初三物理试题期末试卷含解析
- 晋中师范高等专科学校《护理基本技能(Ⅱ)》2023-2024学年第一学期期末试卷
- 不同职业的服装课件图片
- 江苏省南京师范大附中江宁分校2024-2025学年初三年级第一次质量检监测化学试题含解析
- 清远职业技术学院《植物生物技术概论》2023-2024学年第二学期期末试卷
- 青海省西宁市海湖中学2024-2025学年初三下学期(4月)模拟考试生物试题试卷含解析
- 江苏省南京市凤凰花园城小学2024-2025学年数学三下期末统考试题含解析
- 西安电力高等专科学校《应用英语四》2023-2024学年第二学期期末试卷
- 2025年共青团应知应会知识考试题库及答案
- 血液透析贫血的护理查房
- 土地承包合同易懂一点(2025年版)
- 企业健康管理计划规划方案讨论
- 隧道高空作业施工方案
- 雨季三防知识培训
- 危险性较大的分部分项工程专项施工方案严重缺陷清单(试行)
- 2025年上半年第二次商务部国际贸易经济合作研究院招聘7人重点基础提升(共500题)附带答案详解
- 2025年陕西省土地工程建设集团有限责任公司招聘笔试参考题库附带答案详解
- 第7课《不甘屈辱 奋勇抗争》第1课时 虎门销烟 课件 五年级道德与法治下册 统编版
- DB13-T5742-2023醇基燃料使用安全规范
评论
0/150
提交评论