版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
郑州市2024届数学高二第二学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线方程为,它的一条渐近线与圆相切,则双曲线的离心率为()A. B. C. D.2.函数的递增区间为()A., B.C., D.3.若动点与两定点,的连线的斜率之积为常数,则点的轨迹一定不可能是()A.除两点外的圆 B.除两点外的椭圆C.除两点外的双曲线 D.除两点外的抛物线4.在20张百元纸币中混有4张假币,从中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率是()A. B. C. D.以上都不正确5.双曲线的焦点坐标是A. B. C. D.6.下列说法:①将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍;②设有一个回归方程,变量增加个单位时,平均减少个单位;③线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;④在某项测量中,测量结果服从正态分布,若位于区域的概率为,则位于区域内的概率为⑤在线性回归分析中,为的模型比为的模型拟合的效果好;其中正确的个数是()A.1 B.2 C.3 D.47.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为()A. B.C. D.8.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.9.已知椭圆的右焦点为.短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是()A. B. C. D.10.已知复数z满足,则复数等于()A. B. C. D.i11.已知是定义在上的偶函数,且,当时,,则不等式的解集是()A. B. C. D.以上都不正确12.求值:4cos50°-tan40°=()A. B. C. D.2-1二、填空题:本题共4小题,每小题5分,共20分。13.已知,且,则的最小值是______________.14.设随机变量,,若,则___________.15.若变量,满足约束条件则的最大值为______.16.已知函数为的极值点,则关于的不等式的解集为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)用分析法证明:;(2)用反证法证明:三个数中,至少有一个大于或等于.18.(12分)已知函数(1)当时,解不等式;(2)若时,不等式成立,求实数的取值范围。19.(12分)如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上,且PG=4,AG=13GD,BG⊥GC,GB=GC=2,E(1)求异面直线GE与PC所成的角的余弦值;(2)求点D到平面PBG的距离;(3)若F点是棱PC上一点,且DF⊥GC,求PFFC20.(12分)如图,过椭圆的左焦点作轴的垂线交椭圆于点,点和点分别为椭圆的右顶点和上顶点,.(1)求椭圆的离心率;(2)过右焦点作一条弦,使,若的面积为,求椭圆的方程.21.(12分)已知曲线的参数方程为(为参数,),直线经过且倾斜角为.(1)求曲线的普通方程、直线的参数方程.(2)直线与曲线交于A、B两点,求的值.22.(10分)设函数.(Ⅰ)求的值;(Ⅱ)设,若过点可作曲线的三条切线,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】方法一:双曲线的渐近线方程为,则,圆的方程,圆心为,所以,化简可得,则离心率.方法二:因为焦点到渐近线的距离为,则有平行线的对应成比例可得知,即则离心率为.选A.2、A【解题分析】分析:直接对函数求导,令导函数大于0,即可求得增区间.详解:,,增区间为.故答案为A.点睛:本题考查了导数在研究函数的单调性中的应用,需要注意的是函数的单调区间一定是函数的定义域的子集,因此求函数的单调区间一般下,先求定义域;或者直接求导,在定义域内求单调区间.3、D【解题分析】
根据题意可分别表示出动点与两定点的连线的斜率,根据其之积为常数,求得和的关系式,对的范围进行分类讨论,分别讨论且和时,可推断出点的轨迹.【题目详解】因为动点与两定点,的连线的斜率之积为常数,所以,整理得,当时,方程的轨迹为双曲线;当时,且方程的轨迹为椭圆;当时,点的轨迹为圆,抛物线的标准方程中,或的指数必有一个是1,故点的轨迹一定不可能是抛物线,故选D.【题目点拨】本题主要考查直接法求轨迹方程、点到直线的距离公式及三角形面积公式,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.本题就是利用方法①求动点的轨迹方程的.4、A【解题分析】设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,则所求的概率即P(A|B).又,由公式.本题选择A选项.点睛:条件概率的求解方法:(1)利用定义,求P(A)和P(AB),则.(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),得.5、C【解题分析】分析:由题意求出,则,可得焦点坐标详解:由双曲线,可得,故双曲线的焦点坐标是选C.点睛:本题考查双曲线的焦点坐标的求法,属基础题.6、B【解题分析】
逐个分析,判断正误.①将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍;②设有一个回归方程,变量增加个单位时,平均减少个单位;③线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱;④服从正态分布,则位于区域内的概率为;⑤在线性回归分析中,为的模型比为的模型拟合的效果好.【题目详解】①将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍,错误;②设有一个回归方程,变量增加个单位时,平均减少个单位,正确;③线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱,③错误;④服从正态分布,则位于区域内的概率为,④错误;⑤在线性回归分析中,为的模型比为的模型拟合的效果好;正确故选B.【题目点拨】本题考查的知识点有标准差,线性回归方程,相关系数,正态分布等,比较综合,属于基础题.7、A【解题分析】
根据条件,构造函数,利用函数的单调性和导数之间的关系即可判断出该函数在上为减函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可.【题目详解】构造函数,;当时,,;;在上单调递减;,;由不等式得:;,且;;原不等式的解集为.故选:.【题目点拨】本题主要考查利用导数研究函数的单调性,考查利用函数单调性的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.8、D【解题分析】
根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【题目详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【题目点拨】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.9、A【解题分析】试题分析:设是椭圆的左焦点,由于直线过原点,因此两点关于原点对称,从而是平行四边形,所以,即,,设,则,所以,,即,又,所以,.故选A.考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得关系或范围,解题的关键是利用对称性得出就是,从而得,于是只有由点到直线的距离得出的范围,就得出的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.10、D【解题分析】
把给出的等式通过复数的乘除运算化简后,直接利用共轭复数的定义即可得解.【题目详解】,,.故选:D.【题目点拨】本题考查了复数的代数形式的乘除运算,考查共扼复数,是基础题.11、C【解题分析】令,则当时:,即函数在上单调递增,由可得:当时,;当时,;不等式在上的解集为,同理,不等式在上的解集为,综上可得:不等式的解集是.12、C【解题分析】
原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.【题目详解】4cos50°﹣tan40°=4sin40°﹣tan40°======.故选C.【题目点拨】本题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
有错,可以接着利用基本不等式解得最小值.【题目详解】∵,∴,,当且仅当时不等式取等号,∴,故的最小值是.【题目点拨】本题主要考查利用基本不等式求最值的问题,巧用“”,是解决本题的关键.14、【解题分析】
由求出,然后即可算出【题目详解】因为,所以解得,所以所以故答案为:【题目点拨】本题考查的是二项分布的相关知识,较简单.15、9.【解题分析】分析:画出可行域,然后结合目标函数求最值即可.详解:作出如图所示可行域:可知当目标函数经过点A(2,3)时取得最大值,故最大值为9.点睛:考查简单的线性规划的最值问题,准确画出图形,画出可行域确定最优解是解题关键,属于基础题.16、【解题分析】
首先利用为的极值点求出参数,然后利用符号法则解分式不等式即可。【题目详解】,由题意,,经检验,当时,为的极值点.所以.或,的解集为.【题目点拨】本题主要考查导数在函数中的应用,以及分式不等式的解法,意在考查学生的数学运算能力。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解题分析】试题分析:(1)结合不等式的特征,两边平方,用分析法证明不等式即可;(2)利用反证法,假设这三个数没有一个大于或等于,然后结合题意找到矛盾即可证得题中的结论.试题解析:(1)因为和都是正数,所以要证,只要证,展开得,只要证,只要证,因为成立,所以成立.(2)假设这三个数没有一个大于或等于,即,上面不等式相加得(*)而,这与(*)式矛盾,所以假设不成立,即原命题成立.点睛:一是分析法是“执果索因”,特点是从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是寻找使结论成立的充分条件;二是应用反证法证题时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾.18、(1);(2)的取值范围为.【解题分析】分析:(1)进行分类讨论,分别解出种情况下不等式的解集,最后取并集可得不等式的解集;(2)在上恒成立,等价于在上恒成立,可得,从而可得结果.详解:(1)当时,,即不等式的解集为(2)由已知在上恒成立,由,不等式等价于在上恒成立,由,得即:在上恒成立,的取值范围为点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.19、(1)1010;(2)32;(3)【解题分析】
(1)以G点为原点,GB、GC、GP为x轴、(2)计算点到面的距离,需要先做出面的法向量,在法向量与点到面的一个点所成的向量之间的运算,得到结果。(3)设出点的坐标,根据两条线段垂直,得到两个向量的数量积等于0,解出点的坐标,根据向量的模长之比等于线段之比,得出结果。【题目详解】以G点为原点,GB、GC、GP为x轴、则B2故E1,cosθ=所以GE与PC所成的余弦值为1010(2)平面PBG的单位法向量n因为GD=所以点D到平面PBG的距离为|GD(3)设F(0,y,因为DF⊥所以DF∙所以y=32,又PF=λ故F0,所以PFFC【题目点拨】本题考查空间几何量的计算,准确把握立体几何的最新发展趋势:这样可以减低题目的难度,坚持向量法与公理化法的“双轨”处理模式,在复习备考时应引起高度注意。20、(1);(2).【解题分析】
(1)由可得,计算进而得答案。(2)设直线的方程,联立方程组,利用韦达定理,代入的面积公式计算整理即可。【题目详解】(1),,,,,解得,,故.(2)由(1)知椭圆方程可化简为.①易求直线的斜率为,故可设直线的方程为:.②由①②消去得.,.于是的面积,.因此椭圆的方程为,即【题目点拨】本题考查椭圆的离心率以及通过弦长公式求椭圆的相关量,属于一般题。21、(1);(为参数,)(2)【解题分析】
(1)利用,消去参数即可求得曲线的普通方程,根据直线参数方程的定义即可求得直线的参数方程;(2)利用直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论