海南省北师大万宁附中2024届数学高二下期末统考模拟试题含解析_第1页
海南省北师大万宁附中2024届数学高二下期末统考模拟试题含解析_第2页
海南省北师大万宁附中2024届数学高二下期末统考模拟试题含解析_第3页
海南省北师大万宁附中2024届数学高二下期末统考模拟试题含解析_第4页
海南省北师大万宁附中2024届数学高二下期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省北师大万宁附中2024届数学高二下期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.把函数的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图象向右平移个单位,这是对应于这个图象的解析式为()A. B.C. D.2.复数在复平面内对应的点在A.第一象限 B.第二象限 C.第三象限 D.第四象限3.“”是“直线与直线平行”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要4.若随机变量的分布列为()且,则随机变量的方差等于()A. B. C. D.5.已知函数f(x)在R上可导,且f(x)=x2A.f(x)=x2C.f(x)=x26.2018年某地区空气质量的记录表明,一天的空气质量为优良的概率为0.8,连续两天为优良的概率为0.6,若今天的空气质量为优良,则明天空气质量为优良的概率是()A.0.48 B.0.6 C.0.75 D.0.87.给出以下命题,其中真命题的个数是若“或”是假命题,则“且”是真命题命题“若,则或”为真命题已知空间任意一点和不共线的三点,若,则四点共面;直线与双曲线交于两点,若,则这样的直线有3条;A.1 B.2 C.3 D.48.过三点,,的圆交y轴于M,N两点,则()A.2 B.8 C.4 D.109.设,则的值为()A.2 B.0 C. D.110.给出命题①零向量的长度为零,方向是任意的.②若,都是单位向量,则.③向量与向量相等.④若非零向量与是共线向量,则A,B,C,D四点共线.以上命题中,正确命题序号是()A.① B.② C.①和③ D.①和④11.某超市抽取13袋袋装食用盐,对其质量(单位:g)进行统计,得到如图所示的茎叶图,若从这13袋食用盐中随机选取1袋,则该袋食用盐的质量在内的概率为()A. B. C. D.12.设,下列不等式中正确的是()①②③④A.①和② B.①和③ C.①和④ D.②和④二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆:的离心率为,三角形的三个顶点都在椭圆上,设它的三条边、、的中点分别为、、,且三条边所在直线的斜率分别、、,且、、均不为.为坐标原点,若直线、、的斜率之和为,则______.14.已知复数,其中是虚数单位,.(1)若,求实数的取值范围;(2)若是关于的方程的一个根,求实数与的值.15.某细胞集团,每小时有2个死亡,余下的各个分裂成2个,经过8小时后该细胞集团共有772个细胞,则最初有细胞__________个.16.某单位在名男职工和名女职工中,选取人参加一项活动,要求男女职工都有,则不同的选取方法总数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将髙一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀,,(I)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”〔Ⅱ)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自[80,90)发言的人数为随机变量x,求x的分布列和期望.18.(12分)已知函数,.(1)当时,求的单调区间;(2)若有两个零点,求实数的取值范围.19.(12分)已知函数(1)解不等式;(2)若方程在区间有解,求实数的取值范围.20.(12分)党的十九大报告提出,转变政府职能,深化简政放权,创新监管方式,增强政府公信力和执行力,建设人民满意的服务型政府,某市为提高政府部门的服务水平,调查群众对两个部门服务的满意程度.现从群众对两个部门的评价(单位:分)中各随机抽取20个样本,根据评价分作出如下茎叶图:从低到高设置“不满意”,“满意”和“很满意”三个等级,在内为“不满意”,在为“满意”,在内为“很满意”.(1)根据茎叶图判断哪个部门的服务更令群众满意?并说明理由;(2)从对部门评价为“很满意”或“满意”的样本中随机抽取3个样本,记这3个样本中评价为“很满意”的样本数量为,求的分布列和期望.(3)以上述样本数据估计总体数据,现在随机邀请5名群众对两个部门的服务水平打分,则至多有1人对两个部门的评价等级相同的概率是多少?(计算结果精确到0.01)21.(12分)某海湿地如图所示,A、B和C、D分别是以点O为中心在东西方向和南北方向设置的四个观测点,它们到点O的距离均为公里,实线PQST是一条观光长廊,其中,PQ段上的任意一点到观测点C的距离比到观测点D的距离都多8公里,QS段上的任意一点到中心点O的距离都相等,ST段上的任意一点到观测点A的距离比到观测点B的距离都多8公里,以O为原点,AB所在直线为x轴建立平面直角坐标系xOy.(1)求观光长廊PQST所在的曲线的方程;(2)在观光长廊的PQ段上,需建一服务站M,使其到观测点A的距离最近,问如何设置服务站M的位置?22.(10分)我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为.某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;(2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】试题分析:函数的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变得到,再把图象向右平移个单位,得到.考点:三角函数图像变换.2、B【解题分析】因,故复数对应的点在第二象限,应选答案B.3、B【解题分析】

时,直线与直线不平行,所以直线与直线平行的充要条件是,即且,所以“”是直线与直线平行的必要不充分条件.故选B.4、D【解题分析】分析:先根据已知求出a,b的值,再利用方差公式求随机变量的方差.详解:由题得所以故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2)对于离散型随机变量,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,那么=++…+,称为随机变量的均方差,简称为方差,式中的是随机变量的期望.5、A【解题分析】

先对函数f(x)求导,然后将x=1代入导函数中,可求出f'(1)=-2,从而得到f(x)【题目详解】由题意,f'(x)=2x+2f'(1),则f故答案为A.【题目点拨】本题考查了函数解析式的求法,考查了函数的导数的求法,属于基础题.6、C【解题分析】

设随后一天的空气质量为优良的概率是,利用条件概率公式能求出结果.【题目详解】一天的空气质量为优良的概率为,连续两天为优良的概率为,设随后一天空气质量为优良的概率为,若今天的空气质量为优良,则明天空气质量为优良,则有,,故选C.【题目点拨】本题考查条件概率,属于基础题.7、C【解题分析】(1)若“或”是假命题,则是假命题p是真命题,是假命题是真命题,故且真命题,选项正确.(2)命题“若,则或”的逆否命题是若a=2,且b=3,则a+b=5.这个命题是真命题,故原命题也是真命题.(3)∵++=1,∴P,A,B,C四点共面,故(3)正确,(4)由双曲线方程得a=2,c=3,即直线l:y=k(x﹣3)过双曲线的右焦点,∵双曲线的两个顶点之间的距离是2a=4,a+c=2+3=5,∴当直线与双曲线左右两支各有一个交点时,当k=0时2a=4,则满足|AB|=5的直线有2条,当直线与实轴垂直时,当x=c=3时,得,即=,即则y=±,此时通径长为5,若|AB|=5,则此时直线AB的斜率不存在,故不满足条件.综上可知有2条直线满足|AB|=5,故(4)错误,故答案为C.8、C【解题分析】

由已知得,,所以,所以,即为直角三角形,其外接圆圆心为AC中点,半径为长为,所以外接圆方程为,令,得,所以,故选C.考点:圆的方程.9、C【解题分析】

分别令和即可求得结果.【题目详解】令,可得:令,可得:故选【题目点拨】本题考查二项展开式系数和的相关计算,关键是采用赋值的方式构造出所求式子的形式.10、A【解题分析】

根据零向量和单位向量的定义,易知①正确②错误,由向量的表示方法可知③错误,由共线向量的定义和四点共线的意义可判断④错误【题目详解】根据零向量的定义可知①正确;根据单位向量的定义,单位向量的模相等,但方向可不同,故两个单位向量不一定相等,故②错误;与向量互为相反向量,故③错误;若与是共线向量,那么可以在一条直线上,也可以不在一条直线上,只要它们的方向相同或相反即可,故④错误,故选A.【题目点拨】向量中有一些容易混淆的概念,如共线向量,它指两个向量方向相同或相反,这两个向量对应的起点和终点可以不在一条直线上,实际上共线向量就是平行向量.11、B【解题分析】

由题,分析茎叶图,找出质量在[499,501]的个数,再求其概率即可.【题目详解】这个数据中位于的个数为,故所求概率为故选B【题目点拨】本题考查了茎叶图得考查,熟悉茎叶图是解题的关键,属于基础题.12、C【解题分析】分析:利用绝对值三角不等式等逐一判断.详解:因为ab>0,所以a,b同号.对于①,由绝对值三角不等式得,所以①是正确的;对于②,当a,b同号时,,所以②是错误的;对于③,假设a=3,b=2,所以③是错误的;对于④,由绝对值三角不等式得,所以④是正确的.故答案为:C.点睛:(1)本题主要考查绝对值不等式,意在考查学生对该知道掌握水平和分析推理能力.(2)对于类似这样的题目,方法要灵活,有的可以举反例,有的可以直接证明判断.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

求出椭圆方程,设出的坐标,利用椭圆中的结论:,,,结合直线的斜率之和为进行运算.【题目详解】因为椭圆的离心率为,所以,又,,,所以,,,所以.故答案为:-2【题目点拨】解析几何小题若能灵活利用一些二级结论,能使问题的求解更简便,计算量更小,本题等三个结论均可利用设而不求点差法证出.14、(1);(2)或.【解题分析】

(1)先写出的表示,然后将模长关系表示为对应的不等式,即可求解出的取值范围;(2)根据是关于的方程的一个根,先求出方程的根,根据复数相等的原则即可求解出实数与的值.【题目详解】(1)因为,,所以,所以,所以,所以;(2)因为是关于的方程的一个根,所以方程有两个虚根,所以,因为是方程的一个根,所以,所以或.【题目点拨】本题考查复数模长的计算以及有关复数方程的解的问题,难度一般.(1)已知,则;(2)若两个复数相等,则复数的实部和实部相等,虚部和虚部相等.15、7.【解题分析】

设开始有细胞a个,利用细胞生长规律计算经过1小时、2小时后的细胞数,找出规律,得到经过8小时后的细胞数,根据条件列式求解.【题目详解】设最初有细胞a个,因为每小时有2个死亡,余下的各个分裂成2个,所以经过1个小时细胞有,经过2个小时细胞有=,······经过8个小时细胞有,又,所以,,.故答案为7.【题目点拨】本题考查等比数列求和公式的应用,找出规律、构造数列是解题关键,考查阅读理解能力及建模能力,属于基础题.16、.【解题分析】

在没有任何限制的条件下,减去全是女职工的选法种数可得出结果.【题目详解】由题意可知,全是女职工的选法种数为,因此,男女职工都有的选法种数为,故答案为.【题目点拨】本题考查组合问题,利用间接法求解能简化分类讨论,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)分布列见解析,【解题分析】分析:(1)先根据数据填表,再代入卡方公式求,最后与参考数据作比较得结论,(2)先根据分层抽样得抽取人数,再确定随机变量取法,利用组合数确定对应概率,列表可得分布列,最后根据数学期望公式求期望.详解:(1)依题意得有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)从乙班分数段中抽人数分别为2、3、2.依题意随机变量的所有可能取值为点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.18、(1)见解析;(2)【解题分析】

(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)记t=lnx+x,通过讨论a的范围,结合函数的单调性以及函数的零点的个数判断a的范围即可.【题目详解】(1)定义域为:,当时,.∴在时为减函数;在时为增函数.(2)记,则在上单增,且.∴.∴在上有两个零点等价于在上有两个零点.①在时,在上单增,且,故无零点;②在时,在上单增,又,,故在上只有一个零点;③在时,由可知在时有唯一的一个极小值.若,,无零点;若,,只有一个零点;若时,,而,由于在时为减函数,可知:时,.从而,∴在和上各有一个零点.综上讨论可知:时有两个零点,即所求的取值范围是.【题目点拨】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.19、(I);(II).【解题分析】

(1)根据,利用分类讨论便可得到最后解集;(2)根据方程在区间有解转化为函数和函数图象在区间上有交点,从而得解.【题目详解】(1)可化为10或或;2<x≤或或;不等式的解集为;(2)由题意:故方程在区间有解函数和函数图象在区间上有交点当时,【题目点拨】本题考查绝对知不等式的求解和应用,主要是利用分类讨论的方法去掉绝对值符号;关于方程解的问题直接用方程思想和数形结合转化为函数图像交点问题便可得解.20、(1)A部门,理由见解析;(2)的分布列见解析;期望为1;(3)..【解题分析】

(1)通过茎叶图中两部门“叶”的分布即可看出;(2)随机抽取3人,,分别求出相应的概率,即可求出的分布列和期望;(3)求出评价一次两个部门的评价等级不同和相同的概率,随机邀请5名群众,是独立重复实验满足二项分布根据计算公式即可求出.【题目详解】解:(1)通过茎叶图可以看出:A部门的“叶”分布在“茎”的8上,B部门的“叶”分布在“茎”的7上.所以A部门的服务更令群众满意.(2)由茎叶图可知:部门评价为“很满意”或“满意”的样本数量有个,“很满意”的样本数量有个,则从中随机抽取3人,,所以的分布列为:.(3)根据题意可得:A部门“不满意”,“满意”和“很满意”的概率分别为:,,,B部门“不满意”,“满意”和“很满意”的概率分别为:,,.若评价一次两个部门的评价等级不同的概率为:,则评价一次两个部门的评价等级相同的概率为.因为随机邀请5名群众,是独立重复实验,满足二项分布,所以至多有1人对两个部门的评价等级相同的概率为:,所以至多有1人对两个部门的评价等级相同的概率是.【题目点拨】本题考查主要考查茎叶图的集中程度、概率、离散型随机变量的分布列、数学期望的求法、二项分布的求法,属于难题.21、(1)(2)【解题分析】

(1)由题意知,QS的轨迹为圆的一部分,PQ的轨迹为双曲线的一部分,ST的轨迹为双曲线的一部分,分别求出对应的轨迹方程即可;(2)由题意设点M(x,y),计算|MA|2的解析式,再求|MA|的最小值与对应的x、y的值.【题目详解】解:(1)①由题意知,QS段上的任意一点到中心点O的距离都相等,QS的轨迹为圆的一部分,其中r=4,圆心坐标为O,即x≥0、y≥0时,圆的方程为x2+y2=16;②PQ段上的任意一点到观测点C的距离比到观测点D的距离都多8公里,PQ的轨迹为双曲线的一部分,且c=4,a=4,即x<0、y>0时,双曲线方程为1;③ST段上的任意一点到观测点A的距离比到观测点B的距离都多8公里,ST的轨迹为双曲线的一部分,且c=4,a=4,即x>0、y<0时,双曲线方程为1;综上,x≥0、y≥0时,曲线方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论