




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东北师大附中净月实验学校2024届高二数学第二学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设向量,,若向量与同向,则()A.2 B.-2 C.±2 D.02.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A.10 B.11 C.12 D.163.在复平面内,复数对应的点分别为.若为线段的中点,则点对应的复数是()A. B. C. D.4.如图,在空间四边形ABCD中,设E,F分别是BC,CD的中点,则+(-)等于A.B.C.D.5.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A. B.C. D.6.若一个直三棱柱的所有棱长都为1,且其顶点都在一个球面上,则该球的表面积为().A. B. C. D.7.已知定义域为R的函数满足:对任意实数有,且,若,则=()A.2 B.4 C. D.8.两个线性相关变量x与y的统计数据如表:x99.51010.511y1110865其回归直线方程是,则相对应于点(11,5)的残差为()A.0.1 B.0.2 C.﹣0.1 D.﹣0.29.若a|a|>b|b|,则下列判断正确的是()A.a>b B.|a|>|b|C.a+b>0 D.以上都有可能10.已知,且,由“若是等差数列,则”可以得到“若是等比数列,则”用的是()A.归纳推理 B.演绎推理 C.类比推理 D.数学证明11.的值等于()A.1 B.-1 C. D.12.已知点,点在抛物线上运动,点在圆上运动,则的最小值为()A.2 B. C.4 D.二、填空题:本题共4小题,每小题5分,共20分。13.已数列,令为,,,中的最大值2,,,则称数列为“控制数列”,数列中不同数的个数称为“控制数列”的“阶数”例如:为1,3,5,4,2,则“控制数列”为1,3,5,5,5,其“阶数”为3,若数列由1,2,3,4,5,6构成,则能构成“控制数列”的“阶数”为2的所有数列的首项和是______.14.若展开式的二项式系数之和为,则________15.二项式的展开式中的系数为,则________.16.已知向量满足:,,当取最大值时,______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)老师要从7道数学题中随机抽取3道考查学生,规定至少能做出2道即合格,某同学只会做其中的5道题.(I)求该同学合格的概率;(II)用X表示抽到的3道题中会做的题目数量,求X分布列及其期望.18.(12分)已知a、b、c都是正实数,且ab+bc+ca=1求证:19.(12分)以下是某地搜集到的新房源的销售价格(万元)和房屋的面积的数据:房屋面积销售价格(万元)(1)由散点图看出,可用线性回归模型拟合与的关系,求关于的线性回归方程;(2)请根据(1)中的线性回归方程,预测该地当房屋面积为时的销售价格。,,其中,20.(12分)某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测株树苗的高度,经数据处理得到如图1所示的频率分布直方图,其中最高的株树苗的高度的茎叶图如图2所示,以这株树苗的高度的频率估计整批树苗高度的概率.(1)求这批树苗的高度于米的概率,并求图中的值;(2)若从这批树苗中随机选取株,记为高度在的树苗数量,求的分布列和数学期望;(3)若变量满足且,则称变量满足近似于正态分布的概率分布,如果这批树苗的高度近似于正态分布的概率分布,则认为这批树苗是合格的,将顺利被签收,否则,公司将拒绝签收.试问:该批树苗是否被签收?21.(12分)数列满足.(1)计算,并由此猜想通项公式;(2)用数学归纳法证明(1)中的猜想.22.(10分)在平面直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为.(Ⅰ)写出C的方程;(Ⅱ)设直线与C交于A,B两点.k为何值时?此时的值是多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
由与平行,利用向量平行的公式求得x,验证与同向即可得解【题目详解】由与平行得,所以,又因为同向平行,所以.故选A【题目点拨】本题考查向量共线(平行)的概念,考查计算求解的能力,属基础题.2、D【解题分析】
由题计算出抽样的间距为13,由此得解.【题目详解】由题可得,系统抽样的间距为13,则在样本中.故选D【题目点拨】本题主要考查了系统抽样知识,属于基础题.3、C【解题分析】
求出复数对应点的坐标后可求的坐标.【题目详解】两个复数对应的点坐标分别为,则其中点的坐标为,故其对应点复数为,故选:C.【题目点拨】本题考查复数的几何意义,注意复数对应的点是由其实部和虚部确定的,本题为基础题.4、C【解题分析】
由向量的线性运算的法则计算.【题目详解】-=,,∴+(-).故选C.【题目点拨】本题考查空间向量的线性运算,掌握线性运算的法则是解题基础.5、A【解题分析】
利用线面平行判定定理可知B、C、D均不满足题意,从而可得答案.【题目详解】对于B项,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ,同理可证,C,D项中均有AB∥平面MNQ.故选:A.【题目点拨】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.6、B【解题分析】
根据题意画出其立体图形.设此直三棱柱两底面的中心分别为,则球心为线段的中点,利用勾股定理求出球的半径,即可求得该球的表面积.【题目详解】画出其立体图形:直三棱柱的所有棱长都为1,且每个顶点都在球的球面上,设此直三棱柱两底面的中心分别为,则球心为线段的中点,设球的半径为,在中是其外接圆半径,由正弦定理可得:,,即在中∴球的表面积.故选:B.【题目点拨】本题主要考查空间几何体中位置关系、球和正棱柱的性质.解决本题的关键在于能想象出空间图形,并能准确的判断其外接球的球心就是上下底面中心连线的中点.7、B【解题分析】分析:令,可求得,再令,可求得,再对均赋值,即可求得.详解:,令,得,又,再令,得,,令,得,故选B.点睛:本题考查利用赋值法求函数值,正确赋值是解题的关键,属于中档题.8、B【解题分析】
求出样本中心,代入回归直线的方程,求得,得出回归直线的方程,令,解得,进而求解相应点的残差,得到答案.【题目详解】由题意,根据表中的数据,可得,把样本中心代入回归方程,即,解得,即回归直线的方程为,令,解得,所以相应点的残差为,故选B.【题目点拨】本题主要考查了回归直线方程的求解及应用,其中解答中正确求解回归直线的方程,利用回归直线的方程得出预测值是解答的关键,着重考查了运算与求解能力,属于基础题.9、A【解题分析】
利用已知条件,分类讨论化简可得.【题目详解】因为,所以当时,有,即;当时,则一定成立,而和均不一定成立;当时,有,即;综上可得选项A正确.故选:A.【题目点拨】本题主要考查不等关系的判定,不等关系一般是利用不等式的性质或者特值排除法进行求解,侧重考查逻辑推理的核心素养.10、C【解题分析】分析:根据类比推理的定义,结合等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,可得结论.详解:根据类比推理的定义,结合等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,故选C.点睛:本题主要考查等差数列类比到等比数列的类比推理,类比推理一般步骤:①找出等差数列、等比数列之间的相似性或者一致性.②用等差数列的性质去推测物等比数列的性质,得出一个明确的命题(或猜想).11、B【解题分析】
根据复数的计算方法,可得的值,进而可得,可得答案.【题目详解】解:根据复数的计算方法,可得,则,故选:.【题目点拨】本题考查复数的混合运算,解本题时,注意先计算括号内,再来计算复数平方,属于基础题.12、C【解题分析】
根据已知条件先求得抛物线的焦点和准线方程,过点作,垂足为点,求得圆的圆心和半径,运用圆外一点到圆上的点的距离的最值和抛物线的定义,结合基本不等式,即可得到所求最小值.【题目详解】如图:抛物线的准线方程为,焦点,过点作,垂足为点,由抛物线的定义可得,圆的圆心为,半径,可得的最大值为,由,可令,则,即,可得:,当且仅当时等号成立,即,所以的最小值为故选:C【题目点拨】本题考查了抛物线定义以及基本不等式求最小值,考查了计算能力,属于较难题.二、填空题:本题共4小题,每小题5分,共20分。13、1044【解题分析】
根据新定义,分别利用排列、组合,求出首项为1,2,3,4,5的所有数列,再求出和即可.【题目详解】依题意得,首项为1的数列有1,6,a,b,c,d,故有种,首项为2的数列有2,1,6,b,c,d,或2,6,a,b,c,d,故有种,首项为3的数列有3,6,a,b,c,d,或3,1,6,b,c,d,或3,2,6,b,c,d或3,1,6,c,d或,3,2,1,6,c,d,故有种,首项为4的数列有种,即4,6,a,b,c,d,有种,4,1,6,b,c,d,或4,2,6,b,c,d,或4,3,6,b,c,d,有种,4,a,b,6,c,d,其中a,2,,则有种,4,a,b,c,6,d,其中a,b,2,,则有6种,首项为5的数列有种,即5,6,a,b,c,d,有种,5,1,6,b,c,d,或5,2,6,b,c,d,或5,3,6,b,c,d,或5,4,6,b,c,d有种,5,a,b,6,c,d,其中a,2,3,,则有种,5,a,b,c,6,d,其中a,b,2,3,,则有24种,5,a,b,c,d,6,其中a,b,c,2,3,,则有24种,综上,所有首项的和为.故答案为1044【题目点拨】本题主要考查了排列组合,考查了新定义问题,属于难题14、【解题分析】
根据二项展开式二项式系数和为可构造方程求得结果.【题目详解】展开式的二项式系数和为:,解得:本题正确结果:【题目点拨】本题考查二项展开式的二项式系数和的应用,属于基础题.15、【解题分析】分析:先根据二项展开式的通项求得的系数,进而得到的值,然后再根据微积分基本定理求解即可.详解:二项式的展开式的通项为,令,可得的系数为,由题意得,解得.∴.点睛:解答有关二项式问题的关键是正确得到展开式的通项,然后根据题目要求求解.定积分计算的关键是确定被积函数的原函数,然后根据微积分基本定理求解.16、【解题分析】
根据向量模的性质可知当与反向时,取最大值,根据模长的比例关系可得,整理可求得结果.【题目详解】当且仅当与反向时取等号又整理得:本题正确结果:【题目点拨】本题考查向量模长的运算性质,关键是能够确定模长取得最大值时,两个向量之间的关系,从而得到两个向量之间的关系.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)分布列见解析;.【解题分析】分析:(1)设“该同学成绩合格”为事件;(2)可能取的不同值为1,2,3,时,时,时.详解:(1)设“该同学成绩合格”为事件(2)解:可能取的不同值为1,2,3当时当时=当时=的分布列为123点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布则此随机变量的期望可直接利用这种典型分布的期望公式求得.18、见解析【解题分析】
利用不等式证明.【题目详解】∵,∴,时取等号.又均为正数,∴【题目点拨】本题考查用基本不等式证明不等式,解题关键是掌握基本不等式的推广形式:即.19、(1).(2)该地房屋面积为时的销售价格为万元.【解题分析】分析:(1)先求出和的平均数,将数据代入,计算出的值,最后根据,求出的值,即可得到线性回归方程;(2)将代入所求的线性回归方程可估计当房屋面积为时的销售价格.详解:(1)设所求线性回归方程为,则∴∴所求线性回归方程为(2)当时,销售价格的估计值为(万元)所以该地房屋面积为时的销售价格为万元点睛:求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20、(1)概率为,,,(2)详见解析(3)将顺利被公司签收【解题分析】
(1)由图2可知,株样本树苗中高度高于米的共有株,以样本的频率估计总体的概率,可知这批树苗的高度高于米的概率为,记为树苗的高度,结合图1,图2求得,,,,即可求得答案;(2)以样本的频率估计总体的概率,可得这批树苗中随机选取株,高度在的概率为,因为从树苗数量这批树苗中随机选取株,相当于三次独立重复试验,可得随机变量,即可求的分布列,进而求得;(3)利用条件,计算出,从而给出结论.【题目详解】(1)由图2可知,株样本树苗中高度高于米的共有株,以样本的频率估计总体的概率,可知这批树苗的高度高于米的概率为,记为树苗的高度,结合图1,图2可得:,,,组距为,,,.(3)以样本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分期购车银行合同范本
- 兼职厨师劳务合同范本
- 代理建账合同范本
- 入职各种合同范本
- 2025年湖南a2货运从业资格证考试
- 介绍客户返利合同范本
- 农村住房建筑合同范本
- 劳务合同范本英文
- 农田托管合同范本
- 冻库修理合同范本
- 《绿色建筑设计原理》课件
- 中医馆装修合同范本
- 光伏电站小EPC规定合同范本
- 2024年01月江苏2024年昆山鹿城村镇银行第三期校园招考笔试历年参考题库附带答案详解
- 《直播销售》课件-项目一 认识直播与直播销售
- 建筑工程安全与管理
- 2025年内蒙古机电职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2024年05月齐鲁银行总行2024年社会招考笔试历年参考题库附带答案详解
- 浙江省绍兴市2024-2025学年高一上学期期末调测英语试题(无答案)
- 幼儿园开学教师安全知识培训
- 《会展经济与策划》课件
评论
0/150
提交评论