




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届钦州市重点中学高二数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<a C.a<b<c D.b<a<c2.如果函数y=f(x)的图象如图所示,那么导函数的图象可能是A. B. C. D.3.设锐角的三个内角的对边分别为且,,则周长的取值范围为()A. B. C. D.4.若α是第一象限角,则sinα+cosα的值与1的大小关系是()A.sinα+cosα>1 B.sinα+cosα=1 C.sinα+cosα<1 D.不能确定5.在极坐标系中,直线被圆截得的弦长为()A. B.2 C. D.6.由数字0,1,2,3组成的无重复数字且能被3整除的非一位数的个数为()A.12 B.20 C.30 D.317.若,都是实数,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数的虚部为()A. B. C. D.9.设命题,则为()A. B.C. D.10.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是()A.甲 B.乙 C.丙 D.丁11.在二项式的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为()A. B. C. D.12.已知函数在区间上是单调递增函数,则的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为__________.14.已知函数,,,且,则不等式的解集为__________.15.已知△ABC中,角A,B,C成等差数列,且△ABC的面积为2+,则AC边长的最小值是________.16.分别和两条异面直线相交的两条直线的位置关系是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校开设的校本课程分别有人文科学、自然科学、艺术体育三个课程类别,每种课程类别开设课程数及学分设定如下表所示:人文科学类自然科学类艺术体育类课程门数每门课程学分学校要求学生在高中三年内从中选修门课程,假设学生选修每门课程的机会均等.(1)求甲三种类别各选一门概率;(2)设甲所选门课程的学分数为,写出的分布列,并求出的数学期望.18.(12分)在中,角的对边分别.(1)求;(2)若,求的周长.19.(12分)以椭圆:的中心为圆心,为半径的圆称为该椭圆的“准圆”,设椭圆的左顶点为,左焦点为,上顶点为,且满足,.(1)求椭圆及其“准圆"的方程;(2)若过点的直线与椭圆交于、两点,当时,试求直线交“准圆”所得的弦长;(3)射线与椭圆的“准圆”交于点,若过点的直线,与椭圆都只有一个公共点,且与椭圆的“准圆”分别交于,两点,试问弦是否为”准圆”的直径?若是,请给出证明:若不是,请说明理由.20.(12分)如图,在矩形中,,,是的中点,以为折痕将向上折起,变为,且平面平面.(1)求证:;(2)求二面角的大小.21.(12分)定义:在等式中,把,,,…,叫做三项式的次系数列(如三项式的1次系数列是1,1,1).(1)填空:三项式的2次系数列是_______________;三项式的3次系数列是_______________;(2)由杨辉三角数阵表可以得到二项式系数的性质,类似的请用三项式次系数列中的系数表示(无须证明);(3)求的值.22.(10分)已知函数().(Ⅰ)若曲线在点处的切线平行于轴,求实数的值;(Ⅱ)当时,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
∵a=log54<log55=1,b=(log53)2<(log55)2=1,c=log45>log44=1,所以c最大单调增,所以又因为所以b<a所以b<a<c.故选D.2、A【解题分析】试题分析:由原函数图像可知函数单调性先增后减再增再减,所以导数值先正后负再正再负,只有A正确考点:函数导数与单调性及函数图像3、C【解题分析】因为△为锐角三角形,所以,,,即,,,所以,;又因为,所以,又因为,所以;由,即,所以,令,则,又因为函数在上单调递增,所以函数值域为,故选C点睛:本题解题关键是利用正弦定理实现边角的转化得到周长关于角的函数关系,借助二次函数的单调性求最值,易错点是限制角的取值范围.4、A【解题分析】试题分析:设角α的终边为OP,P是角α的终边与单位圆的交点,PM垂直于x轴,M为垂足,则由任意角的三角函数的定义,可得sinα=MP=|MP|,cosα=OM=|OM|,再由三角形任意两边之和大于第三边,得出结论.解:如图所示:设角α的终边为OP,P是角α的终边与单位圆的交点,PM垂直于x轴,M为垂足,则由任意角的三角函数的定义,可得sinα=MP=|MP|,cosα=OM=|OM|.△OPM中,∵|MP|+|OM|>|OP|=1,∴sinα+cosα>1,故选A.考点:三角函数线.5、C【解题分析】试题分析:将极坐标化为直角坐标可得和,圆心到直线的距离,故,所以应选C.考点:极坐标方程与直角坐标之间的互化.【易错点晴】极坐标和参数方程是高中数学选修内容中的核心内容,也是高考必考的重要考点.解答这类问题时,一定要扎实掌握极坐标与之交坐标之间的关系,并学会运用这一关系进行等价转换.本题在解答时充分利用题设条件,运用将极坐标方程转化为直角坐标方程,最后通过直角坐标中的运算公式求出弦长,从而使问题巧妙获解.6、D【解题分析】
分成两位数、三位数、四位数三种情况,利用所有数字之和是的倍数,计算出每种情况下的方法数然后相加,求得所求的方法总数.【题目详解】两位数:含数字1,2的数有个,或含数字3,0的数有1个.三位数:含数字0,1,2的数有个,含数字1,2,3有个.四位数:有个.所以共有个.故选D.【题目点拨】本小题主要考查分类加法计数原理,考查一个数能被整除的数字特征,考查简单的排列组合计算,属于基础题.7、A【解题分析】分析:先证明充分性,两边同时平方即可,再证明必要性,取特值,从而判断出结果。详解:充分性:将两边平方可得:化简可得:则,故满足充分性必要性:,当时,,故不满足必要性条件则是的充分而不必要条件故选点睛:本题考查了充分条件与必要条件的判定,可以根据其定义进行判断,在必要性的判定时采用了取特值的方法,这里也要熟练不等式的运用8、C【解题分析】
先由题意得到,进而可求出结果.【题目详解】由题意可得:,所以虚部为.故选C【题目点拨】本题主要考查复数的应用,熟记复数的概念即可,属于常考题型.9、D【解题分析】分析:根据全称命题的否定解答.详解:由全称命题的否定得为:,故答案为D.点睛:(1)本题主要考查全称命题的否定,意在考查学生对这些知识的掌握水平.(2)全称命题:,全称命题的否定():.10、A【解题分析】
①假定甲说的是真话,则丙说“甲说的对”也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故甲说的是假话;②假定乙说的是真话,则丁说“反正我没有责任”也为真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故乙说的是假话;③假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故丙说的是假话;综上可得,丁说的真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,所以甲负主要责任,故选A.11、C【解题分析】
先根据条件求出,再由二项式定理及展开式通项公式,即可得答案.【题目详解】由已知可得:,所以,则展开式的中间项为,即展开式的中间项的系数为1120.故选:C.【题目点拨】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.12、A【解题分析】分析:由函数在区间上是单调递增函数,得,进而分离参数得;构造函数,研究函数的值域特征,进而得到的单调性,最后求得的取值范围。详解:因为在区间上是单调递增函数所以,而在区间上所以,即令,则分子分母同时除以,得令,则在区间上为增函数所以所以在区间上恒成立即在区间上恒成立所以函数在区间上为单调递减函数所以所以选A点睛:本题考查了函数与导函数的综合应用,分离参数、构造函数法在解决单调性、最值问题中的应用,综合性强,对分析问题、解决问题的能力要求较高,属于难题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:先求出四个电子元件的使用寿命超过1000小时的概率都为,再设A={元件1或元件2正常工作},B={元件3或元件4正常工作},再求P(A),P(B),再求P(AB)得解.详解:由于四个电子元件的使用寿命(单位:小时)均服从正态分布,所以四个电子元件的使用寿命超过1000小时的概率都为设A={元件1或元件2正常工作},B={元件3或元件4正常工作},所以所以该部件的使用寿命超过1000小时的概率为.故答案为:.点睛:(1)本题主要考查正态分布曲线,考查独立事件同时发生的概率,意在考查学生对这些知识的掌握水平和分析推理能力.(2)一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,即.14、【解题分析】分析:根据条件,构造函数,求函数的导数,利用导数即可求出不等式的解集.详解:由则,构造函数,则,当时,,即函数在上单调递减,则不等式等价于,即,则,故不等式的解集为.故答案为:.点睛:本题主要考查不等式的求解,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键.15、【解题分析】
分析:由已知及等差数列的性质可得,结合三角形内角和定理可求的值,利用三角形面积公式可得,利用余弦定理及基本不等式可解得边的最小值.详解:成等差数列,,又,由,得,,因为,,解得,的最小值为,故答案为.点睛:本题主要考查了等差数列的性质、三角形内角和定理、三角形面积公式、余弦定理,基本不等式在解三角形中的应用,考查了计算能力和转化与划归思想,属于中档题.16、相交或异面【解题分析】
根据异面直线的定义可知与两条异面直线相交的两条直线不可能平行,可得到位置关系.【题目详解】如下图所示:此时的位置关系为:相交如下图所示:此时的位置关系为:异面若平行,则与的四个交点,四点共面;此时共面,不符合异面直线的定义综上所述:的位置关系为相交或异面本题正确结果;相交或异面【题目点拨】本题考查空间中直线的位置关系的判断,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解题分析】
(1)记事件{甲三种类别各选一门},则根据排列组合公式得到答案.(2)的取值有:,分别计算对应概率得到分布列,再计算数学期望.【题目详解】解:(1)记事件{甲三种类别各选一门}则(2)的取值有:,则所以分布列为所以期望【题目点拨】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力.18、(1);(2).【解题分析】
(1)由正弦定理,余弦定理可得cosA,结合范围A∈(0,π),可得A的值.(2)由已知利用三角形的内角和定理可求B,C的值,进而根据正弦定理可求a,c的值,即可得解△ABC的周长【题目详解】(1)根据.可得,即所以.又因为,所以.(2).所以.因为.所以.则的周长为.【题目点拨】本题主要考查了正弦定理,余弦定理,三角形的内角和定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.19、(1);(2);(3)是准圆的直径,具体见解析【解题分析】
(1)根据所给条件可知,,根据面积公式可知,最后解方程组求解椭圆方程;(2)设直线为,与椭圆方程联立,,表示根与系数的关系,并且代入的数量积的坐标表示,求,最后代入直线和圆相交的弦长公式;(3)首先求点的坐标,当直线与椭圆有一个交点时,,得到,可知,可知两条切线互相垂直,根据圆的性质可得答案.【题目详解】(1),,,,准圆.(2),设:,,,,,即,圆心与该直线距离,弦长.(3),整理为:因为直线与圆只有1个交点,整理为:椭圆切线与垂直,即,在准圆上,,也在准圆上,,是准圆的直径【题目点拨】本题考查了直线与椭圆的位置关系的综合问题,涉及椭圆中三角形面积的最值的求法,第二问中设而不求的基本方法也使得求解过程变得简单,在解决圆锥曲线与动直线问题中,韦达定理,弦长公式都是解题的基本工具.20、(1)见证明;(2)90°【解题分析】
(1)利用垂直于所在的平面,从而证得;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厂房租赁协议合同
- 开发商商铺租赁合同
- 烟酒的购销合同
- 上饶卫生健康职业学院《人类的生育与健康》2023-2024学年第二学期期末试卷
- 梧州医学高等专科学校《农村小学复式教学》2023-2024学年第二学期期末试卷
- 曲靖职业技术学院《文学翻译(一)》2023-2024学年第二学期期末试卷
- 湖北科技学院《女子乒乓球(I)》2023-2024学年第二学期期末试卷
- 山东协和学院《药理学理论》2023-2024学年第二学期期末试卷
- 内蒙古鸿德文理学院《国际贸易实务模拟实验》2023-2024学年第二学期期末试卷
- 延安大学西安创新学院《素描造型人体训练》2023-2024学年第二学期期末试卷
- 2025届江苏省南京市、盐城市高三语文一模调研作文题目解析及范文:直路、陡坡、弯道
- 幼儿教育专业国家技能人才培养工学一体化课程设置方案
- 货物学 课件全套 孔月红 项目1-8:货物与货物学概述-集装箱货物
- 2024-2025学年洛阳市老城区三年级数学第一学期期末经典试题含解析
- 2024年02月全国2024中国建设银行远程智能银行中心客服代表定向招考笔试历年参考题库附带答案详解
- 双线大桥连续梁刚构专项施工方案及方法
- 美容院前台接待流程
- 中小学食堂财务培训
- 国药现代笔试
- 医疗器械市场部年度规划
- 《商务沟通-策略、方法与案例》课件 第七章 自我沟通
评论
0/150
提交评论