2024届贵州省六盘山育才中学高二数学第二学期期末综合测试模拟试题含解析_第1页
2024届贵州省六盘山育才中学高二数学第二学期期末综合测试模拟试题含解析_第2页
2024届贵州省六盘山育才中学高二数学第二学期期末综合测试模拟试题含解析_第3页
2024届贵州省六盘山育才中学高二数学第二学期期末综合测试模拟试题含解析_第4页
2024届贵州省六盘山育才中学高二数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省六盘山育才中学高二数学第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.点M的极坐标(4,A.(4,π3) B.(42.在中,内角所对应的边分别为,且,若,则边的最小值为()A. B. C. D.3.曲线的参数方程为,则曲线是()A.线段 B.双曲线的一支 C.圆弧 D.射线4.的展开式中有理项的项数为()A.1 B.2 C.3 D.45.若角的终边经过点,则()A. B. C. D.6.已知椭圆的左右焦点分别,,焦距为4,若以原点为圆心,为直径的圆恰好与椭圆有两个公共点,则此椭圆的方程为()A. B.C. D.7.设是偶函数的导函数,当时,,则不等式的解集为()A. B.C. D.8.在高台跳水运动中,时相对于水面的高度(单位:)是,则该高台跳水运动员在时瞬时速度的大小为()A. B. C. D.9.已知函数,,若,则()A. B. C. D.10.若函数,则()A.1 B. C.27 D.11.已知定义在R上的增函数f(x),满足f(-x)+f(x)=0,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定大于0 B.一定小于0C.等于0 D.正负都有可能12.在复平面内复数z对应的点在第四象限,对应向量的模为3,且实部为,则复数等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点到直线:的距离等于3,则_______.14.设集合,选择的两个非空子集和,要使中最小的数大于中最大的数,则不同的选择方法共有________种.15.将参数方程(为参数),转化成普通方程为_______.16._______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为.(Ⅰ)写出C的方程;(Ⅱ)设直线与C交于A,B两点.k为何值时?此时的值是多少?18.(12分)已知复数.(1)求实数的值;(2)若,求的取值范围.19.(12分)在直角梯形中,,,,为的中点,如图1.将沿折到的位置,使,点在上,且,如图2.(1)求证:⊥平面;(2)求二面角的正切值.20.(12分)为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2014年该市某中学的某新生想通过考核选拨进入该校的“电影社”和“心理社”,已知该同学通过考核选拨进入这两个社团成功与否相互独立根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为,并且进入“电影社”的概率小于进入“心理社”的概率(Ⅰ)求该同学分别通过选拨进入“电影社”的概率和进入心理社的概率;(Ⅱ)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修课学分分数不低于1分的概率.21.(12分)已知.(1)当时,求的展开式中含项的系数;(2)证明:的展开式中含项的系数为.22.(10分)已知函数.(1)若函数在上为增函数,求的取值范围;(2)若函数有两个不同的极值点,记作,,且,证明:(为自然对数).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

在点M极径不变,在极角的基础上加上π,可得出与点M关于极点对称的点的一个极坐标。【题目详解】设点M关于极点的对称点为M',则OM'所以点M'的一个极坐标为(4,7π6)【题目点拨】本题考查点的极坐标,考查具备对称性的两点极坐标之间的关系,把握极径与极角之间的关系,是解本题的关键,属于基础题。2、D【解题分析】

根据由正弦定理可得,由余弦定理可得,利用基本不等式求出,求出边的最小值.【题目详解】根据由正弦定理可得.

由余弦定理可得..即.,

故边的最小值为,

故选D.【题目点拨】本题主要考查了余弦定理、基本不等式的应用,解三角形,属于中档题.3、A【解题分析】由代入消去参数t得又所以表示线段。故选A4、B【解题分析】

求得二项式展开式的通项公式,由此判断出有理项的项数.【题目详解】的展开式通项为,当或时,为有理项,所以有理项共有项.故选:B【题目点拨】本小题主要考查二项式展开式的通项公式,属于基础题.5、A【解题分析】

用余弦的定义可以直接求解.【题目详解】点到原点的距离为,所以,故本题选A.【题目点拨】本题考查了余弦的定义,考查了数学运算能力.6、A【解题分析】

已知,又以原点为圆心,为直径的圆恰好与椭圆有两个公共点,这两个公共点只能是椭圆短轴的顶点,从而有,于是可得,从而得椭圆方程。【题目详解】∵以原点为圆心,为直径的圆恰好与椭圆有两个公共点,∴这两个公共点只能是椭圆短轴的顶点,∴,又即,∴,∴椭圆方程为。故选:A。【题目点拨】本题考查椭圆的标准方程,解题关键时确定的值,本题中注意椭圆的对称轴,从而确定关系。7、B【解题分析】

设,计算,变换得到,根据函数的单调性和奇偶性得到,解得答案.【题目详解】由题意,得,进而得到,令,则,,.由,得,即.当时,,在上是增函数.函数是偶函数,也是偶函数,且在上是减函数,,解得,又,即,.故选:.【题目点拨】本题考查了利用函数的奇偶性和单调性解不等式,构造函数,确定其单调性和奇偶性是解题的关键.8、C【解题分析】

根据瞬时速度就是的导数值即可求解.【题目详解】由,则,当时,.故选:C【题目点拨】本题考查了导数的几何意义,同时考查了基本初等函数的导数以及导数的运算法则,属于基础题.9、A【解题分析】分析:先求出g(1)=a﹣1,再代入f[g(1)]=1,得到|a﹣1|=0,问题得以解决.详解:∵f(x)=5|x|,g(x)=ax2﹣x(a∈R),f[g(1)]=1,∴g(1)=a﹣1,∴f[g(1)]=f(a﹣1)=5|a﹣1|=1=50,∴|a﹣1|=0,∴a=1,故答案为:A.点睛:本题主要考查了指数的性质,和函数值的求出,属于基础题.10、C【解题分析】

求导后代入可构造方程求得,从而得到,代入可求得结果.【题目详解】,,解得:,,.故选:.【题目点拨】本题考查导数值的求解问题,关键是能够明确为实数,其导数为零.11、A【解题分析】因为f(x)在R上的单调增,所以由x2+x1>0,得x2>-x1,所以同理得即f(x1)+f(x2)+f(x3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行12、C【解题分析】

设复数,根据向量的模为3列方程求解即可.【题目详解】根据题意,复平面内复数z对应的点在第四象限,对应向量的模为3,且实部为.设复数,∵,∴,复数.故.故选:C.【题目点拨】本题考查复数的代数表示及模的运算,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、或【解题分析】

直接利用点到直线的距离公式列方程,即可得到答案.【题目详解】由题意可得:,解得或.故答案为:或.【题目点拨】本题考查点到直线的距离公式,考查基本运算求解能力,属于基础题.14、【解题分析】试题分析:若集合中分别有一个元素,则选法种数有种;若集合中有一个元素,集合中有两个元素,则选法种数有种;若集合中有一个元素,集合中有三个元素,则选法种数有种;若集合中有一个元素,集合中有四个元素,则选法种数有种;若集合中有两个元素,集合中有一个元素,则选法种数有种;若集合中有两个元素,集合中有两个元素,则选法种数有种;若集合中有两个元素,集合中有三个元素,则选法种数有种;若集合中有三个元素,集合中有一个元素,则选法种数有种;若集合中有三个元素,集合中有两个元素,则选法种数有种;若集合中有四个元素,集合中有一个元素,则选法种数有种;总计有种.故答案应填:.考点:组合及组合数公式.【方法点睛】解法二:集合中没有相同的元素,且都不是空集,从个元素中选出个元素,有种选法,小的给集合,大的给集合;从个元素中选出个元素,有种选法,再分成两组,较小元素的一组给集合,较大元素的一组给集合,共有种方法;从个元素中选出个元素,有种选法,再分成两组,较小元素的一组给集合,较大元素的一组给集合,共有种方法;从个元素中选出个元素,有种选法,再分成两组,较小元素的一组给集合,较大元素的一组给集合,共有种方法;总计为种方法.根据题意,中最小的数大于中最大的数,则集合中没有相同的元素,且都不是空集,按中元素数目这和的情况,分种情况讨论,分别计算其选法种数,进而相加可得答案.本题考查组合数公式的运用,注意组合与排列的不同,进而区别运用,考查分类讨论的数学思想,属于压轴题.15、【解题分析】

将参数方程变形为,两式平方再相减可得出曲线的普通方程.【题目详解】将参数方程变形为,两等式平方得,上述两个等式相减得,因此,所求普通方程为,故答案为:.【题目点拨】本题考查参数方程化为普通方程,在消参中,常用平方消元法与加减消元法,考查计算能力,属于中等题.16、4【解题分析】分析:利用微积分基本定理直接求解即可.详解:即答案为4.点睛:本题考查微积分基本定理的应用,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)曲线C的方程为.(Ⅱ)时,.【解题分析】

(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,故曲线C的方程为.(Ⅱ)设,其坐标满足消去y并整理得,故.,即.而,于是.所以时,,故.当时,,.,而,所以.【题目详解】请在此输入详解!18、(1);(2).【解题分析】

(1)根据题意,先计算出,再由即可求出结果;(2)先由(1)知,再由复数的几何意义即可求出结果.【题目详解】(1)因为,,所以,因为,所以,解得或,因为,所以.(2)由(1)知,因为,所以在复平面内对应点的轨迹为以(0,1)为圆心,以2为半径的圆.故在复平面内表示对应的点到坐标原点的距离,所以的取值范围即:以(0,1)为圆心,以2为半径的圆上的点到坐标原点的距离,所以,即.故的取值范围为.【题目点拨】本题主要考查复数的运算以及复数的几何意义,熟记概念和几何意义即可求解,属于基础题型.19、(1)见解析(2)【解题分析】试题分析:(1)证明:在图中,由题意可知,为正方形,所以在图中,,四边形ABCD是边长为2的正方形,因为,ABBC,所以BC平面SAB,又平面SAB,所以BCSA,又SAAB,所以SA平面ABCD,(2)在AD上取一点O,使,连接EO.因为,所以EO//SA所以EO平面ABCD,过O作OHAC交AC于H,连接EH,则AC平面EOH,所以ACEH.所以为二面角E—AC—D的平面角,在中,…11分,即二面角E—AC—D的正切值为考点:线面垂直的判定及二面角求解点评:本题中第二问求二面角采用的是作角求角的思路,在作角时常用三垂线定理法;此外还可用空间向量的方法求解;以A为原点AB,AD,AS为x,y,z轴建立坐标系,写出各点坐标,代入向量计算公式即可20、(1)(2)【解题分析】

(Ⅰ)利用相互独立事件概率乘法公式和对立事件概率计算公式列出方程组,能求出结果.(Ⅱ)利用独立事件的概率乘法公式分别求得分数为1和1.5时的概率,再利用互斥事件概率计算公式求得结果.【题目详解】(Ⅰ)根据题意得:,且p1<p2,∴p1,p2.(Ⅱ)令该同学在社团方面获得校本选修课加分分数为ξ,P(ξ=1)=(1),P(ξ=1.5),∴该同学在社团方面获得校本选修课学分分数不低于1分的概率:p.【题目点拨】本题考查概率的求法,考查相互独立事件概率乘法公式、对立事件概率计算公式、互斥事件概率计算公式等基础知识,考查运算求解能力,是基础题.21、(1)84;(2)证明见解析【解题分析】

(1)当时,根据二项展开式分别求出每个二项式中的项的系数相加即可;(2)根据二项展开式,含项的系数为,又,再结合即可得到结论.【题目详解】(1)当时,,的展开式中含项的系数为.(2),,故的展开式中含项的系数为因为,所以项的系数为:.【题目点拨】本题考查二项式定理、二项展开式中项的系数的求法、组合数的计算,考查函数与方程思想,考查逻辑推理能力、运算求解能力.22、(1)(2)见解析【解题分析】分析:(1)由题意可知,函数的定义域为,,因为函数在为增函数,所以在上恒成立,等价于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论