2024届海南省东方市琼西中学数学高二下期末调研试题含解析_第1页
2024届海南省东方市琼西中学数学高二下期末调研试题含解析_第2页
2024届海南省东方市琼西中学数学高二下期末调研试题含解析_第3页
2024届海南省东方市琼西中学数学高二下期末调研试题含解析_第4页
2024届海南省东方市琼西中学数学高二下期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届海南省东方市琼西中学数学高二下期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若平面四边形ABCD满足,则该四边形一定是()A.正方形 B.矩形 C.菱形 D.直角梯形2.展开式中的系数为()A. B. C. D.603.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.4.在掷一枚图钉的随机试验中,令,若随机变量X的分布列如下:010.3则()A.0.21 B.0.3 C.0.5 D.0.75.已知定义在上的函数,若是奇函数,是偶函数,当时,,则()A. B. C. D.6.设函数f(x)=cos(x+),则下列结论错误的是A.f(x)的一个周期为−2π B.y=f(x)的图像关于直线x=对称C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减7.某一批花生种子,如果每1粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是()A. B. C. D.8.已知x1+i=1-yi,其中x,y是实数,i是虚数单位,则x+yiA.1+2iB.1-2iC.2+iD.2-i9.如图是函数的导函数的图象,则下面说法正确的是()A.在上是增函数B.在上是减函数C.当时,取极大值D.当时,取极大值10.观察下列各式:,则的末四位数字为()A.3125 B.5625 C.0625 D.812511.若,均为单位向量,且,则与的夹角大小为()A. B. C. D.12.若某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知中,角..的对边分别为..,且,,,则____14.已知函数只有一个零点,则__________.15.若二项式的展开式中的系数是84,则实数__________.16.某中学共有人,其中高二年级的人数为.现用分层抽样的方法在全校抽取人,其中高二年级被抽取的人数为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)高二某班名同学期末考完试后,商量购买一些学习参考书准备在高三时使用,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪购买,掷出点数大于或等于的人去图书批发市场购买,掷出点数小于的人去网上购买,且参加者必须从图书批发市场和网上选择一家购买.(1)求这人中至多有人去图书批发市场购买的概率;(2)用、分别表示这人中去图书批发市场和网上购买的人数,记,求随机变量的分布列和数学期望.18.(12分)已知函数,其中,且曲线在点处的切线平行于轴.(1)求实数的值;(2)求函数的单调区间.19.(12分)某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量(单位:千克)与该地当日最低气温(单位:)的数据,如下表:2589111210887(1)求出与的回归方程;(2)判断与之间是正相关还是负相关;若该地1月份某天的最低气温为6,请用所求回归方程预测该店当日的营业额;附:回归方程中,,.20.(12分)已知函数对任意实数都有,且.(I)求的值,并猜想的表达式;(II)用数学归纳法证明(I)中的猜想.21.(12分)已知平面直角坐标系xOy中,直线l的参数方程为(t为参数,0≤α<π且),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.已知直线l与曲线C交于A、B两点,且.(1)求α的大小;(2)过A、B分别作l的垂线与x轴交于M,N两点,求|MN|.22.(10分)设向量,,,记函数.(1)求函数的单调递增区间;(2)在锐角中,角,,的对边分别为,,,若,,求面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】试题分析:因为,所以四边形ABCD为平行四边形,又因为,所以BD垂直AC,所以四边形ABCD为菱形.考点:向量在证明菱形当中的应用.点评:在利用向量进行证明时,要注意向量平行与直线平行的区别,向量平行两条直线可能共线也可能平行.2、A【解题分析】分析:先求展开式的通项公式,根据展开式中的系数与关系,即可求得答案.详解:展开式的通项公式,可得展开式中含项:即展开式中含的系数为.故选A.点睛:本题考查了二项式定理的应用问题,利用二项展开式的通项公式求展开式中某项的系数是解题关键.3、D【解题分析】

根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【题目详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【题目点拨】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.4、D【解题分析】

先由概率和为1,求出,然后即可算出【题目详解】因为,所以所以故选:D【题目点拨】本题考查的是离散型随机变量的分布列的性质及求由分布列求期望,较简单.5、A【解题分析】

根据是偶函数判出是函数的对称轴,结合是奇函数可判断出函数是周期为的周期函数,由此求得的值.【题目详解】由于是偶函数,所以函数的一条对称轴为,由于函数是奇函数,函数图像关于原点对称,故函数是周期为的周期函数,故,故选A.【题目点拨】本小题主要考查函数的奇偶性、考查函数的对称性、考查函数的周期性,考查函数值的求法,属于基础题.6、D【解题分析】f(x)的最小正周期为2π,易知A正确;f=cos=cos3π=-1,为f(x)的最小值,故B正确;∵f(x+π)=cos=-cos,∴f=-cos=-cos=0,故C正确;由于f=cos=cosπ=-1,为f(x)的最小值,故f(x)在上不单调,故D错误.故选D.7、B【解题分析】

根据题意得到,计算得到答案.【题目详解】播下3粒种子恰有2粒发芽的概率.故选:.【题目点拨】本题考查了概率的计算,意在考查学生的计算能力.8、D【解题分析】∵x1+i=x(1-i)9、D【解题分析】分析:先由图象得出函数的单调性,再利用函数的单调性与导数的关系即可得出.详解:由图象可知上恒有,在上恒有,在上单调递增,在上单调递减则当时,取极大值故选:D.点睛:熟练掌握函数的单调性、极值与导数的关系是解题的关键,是一道基础题.10、C【解题分析】

根据,分析次数与末四位数字的关系,归纳其变化规律求解.【题目详解】因为,观察可知的末四位数字3125,的末四位数字5625,的末四位数字8125,的末四位数字0625,又,则的末四位数字为0625.故选:C【题目点拨】本题主要考查数列中的归纳推理,还考查了理解辨析推理的能力,属于中档题.11、C【解题分析】分析:由向量垂直得向量的数量积为0,从而求得,再由数量积的定义可求得夹角.详解:∵,∴,∴,∴,∴.故选C.点睛:平面向量数量积的定义:,由此有,根据定义有性质:.12、C【解题分析】

运行程序,当时退出程序,输出的值.【题目详解】运行程序,,判断否,,判断否,,……,以此类推,,判断是,退出循环,输出,故选C.【题目点拨】本小题主要考查计算循环结构程序框图输出的结果,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】,∴,由余弦定理得,∴,故答案为.14、-3【解题分析】

先判断函数的奇偶性,再由题得,化简即得m的值.【题目详解】因为,所以函数为偶函数,因为函数只有一个零点,故,所以.故答案为:-3.【题目点拨】本题主要考查函数奇偶性的判断和函数的零点问题,意在考查学生对这些知识的理解掌握水平,属于基础题.15、1【解题分析】

试题分析:由二项式定理可得:,因为的系数是,所以即,即,所以.考点:二项式定理.16、63【解题分析】三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)分布列见解析,.【解题分析】

(1)由题意可知,名同学中每名同学去图书批发市场购买的概率为,然后利用互斥事件的概率加法公式和独立重复试验的概率公式可计算出所求事件的概率;(2)由题意可知,随机变量的可能取值有、、,分别求出相应的概率,由此能求出随机变量的分布列和数学期望.【题目详解】(1)由题意可知,名同学中每名同学去图书批发市场购买的概率为,所以,这人中至多有人去图书批发市场购买的概率为;(2)用、分别表示这人中去图书批发市场和网上购买的人数,记,则的可能取值为、、,则,,.所以,随机变量的分布列如下表所示:因此,随机变量的数学期望为.【题目点拨】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,是中档题.18、(1)(2)单调增区间为:函数单调减区间为【解题分析】

(1)根据题可知,由此计算出的值;(2)写出并因式分解,讨论取何范围能使,由此求出单调递增、递减区间.【题目详解】(1)由题意,曲线在点处的切线斜率为0.,,所以;(2)由(1)知,,,当时,,当时,,当时,,所以函数单调增区间为:;函数单调减区间为:.【题目点拨】本题考查导数的几何意义的运用以及求解具体函数的单调区间,难度较易.已知曲线某点处切线斜率求解参数时,可通过先求导,然后根据对应点处切线斜率等于导数值求解出参数.19、(1),(2)9.56【解题分析】试题分析:(1)根据公式求出线性回归直线方程的系数,可得方程;(2)由回归方程中的系数的正负确定正相关还是负相关,把代入回归直线方程可得估值.试题解析:(1)∵令,则,,∴∴,∴,∴∴所求的回归方程是(2)由知与之间是负相关;将代入回归方程可预测该店当日的销售额(千克)20、(I);(II)证明见解析.【解题分析】

(I)根据的值猜想的表达式;(II)分和两步证明.【题目详解】(I),,,,猜想.(II)证明:当时,,猜想成立;假设时,猜想成立,即,则当时,,即当时猜想成立.综上,对于一切均成立.【题目点拨】本题考查抽象函数求值与归纳猜想.21、(1);(2)4.【解题分析】

(1)直接利用参数方程和极坐标方程与直角坐标方程进行转化,再利用点到直线的距离公式求出结果.(2)直接利用关系式求出结果.【题目详解】(1)由已知直线l的参数方程为:(t为参数,0≤α<π且),则:,∵,,∴O到直线l的距离为3,则,解之得.∵0<α<π且,∴(2)直接利用关系式,解得:.【题目点拨】本题主要考查了参数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论