2024届江苏省泰州市兴化市第一中学高二数学第二学期期末考试试题含解析_第1页
2024届江苏省泰州市兴化市第一中学高二数学第二学期期末考试试题含解析_第2页
2024届江苏省泰州市兴化市第一中学高二数学第二学期期末考试试题含解析_第3页
2024届江苏省泰州市兴化市第一中学高二数学第二学期期末考试试题含解析_第4页
2024届江苏省泰州市兴化市第一中学高二数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省泰州市兴化市第一中学高二数学第二学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在《九章算术)方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值,这可以通过方程确定出来,类似地,可得的值为()A. B. C. D.2.函数的大致图象为()A. B. C. D.3.由直线与曲线围成的封闭图形的面积是()A. B. C. D.4.欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e2i表示的复数在复平面中对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.椭圆的长轴长为()A.1 B.2 C. D.46.已知,取值如下表:从所得的散点图分析可知:与线性相关,且,则等于()A. B. C. D.7.阅读下图所示程序框图,若输入,则输出的值是()A.B.C.D.8.在二项式的展开式中,的系数为()A.﹣80 B.﹣40 C.40 D.809.抛物线上的点到直线的最短距离为()A. B. C. D.10.函数f(x)=lnxA. B. C. D.11.已知直线l的参数方程为x=t+1,y=t-1,(tA.0∘ B.45∘ C.9012.已知空间向量,且,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的虚轴长为,其渐近线夹角为__________.14.已知函数,若函数存在唯一零点,且,则实数a的取值范围是________.15.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的底面半径为_______.16.某学校高三年级700人,高二年级700人,高一年级800人,若采用分层抽样的办法,从高一年级抽取80人,则全校总共抽取______人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,R,矩阵的两个特征向量,.(1)求矩阵的逆矩阵;(2)若,求.18.(12分)已知函数.(1)若在处的切线与轴平行,求的值;(2)当时,求的单调区间.19.(12分)已知点O(0,0),A(2,一1),B(一4,8).(1)若点C满足,求点C的坐标;(2)若与垂直,求k.20.(12分)已知函数(1)若在其定义域上是单调增函数,求实数的取值集合;(2)当时,函数在有零点,求的最大值21.(12分)(1)集合,或,对于任意,定义,对任意,定义,记为集合的元素个数,求的值;(2)在等差数列和等比数列中,,,是否存在正整数,使得数列的所有项都在数列中,若存在,求出所有的,若不存在,说明理由;(3)已知当时,有,根据此信息,若对任意,都有,求的值.22.(10分)如图,在四棱锥中,平面,四边形为正方形,,、分别是、中点.(1)证明:(2)求平面与平面所成锐二面角的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

设,可得,求解即可.【题目详解】设,则,即,解得,取.故选B.【题目点拨】本题考查了类比推理,考查了计算能力,属于基础题.2、B【解题分析】分析:利用函数的解析式,判断大于时函数值的符号,以及小于时函数值的符号,对比选项排除即可.详解:当时,函数,排除选项;当时,函数,排除选项,故选B.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.3、B【解题分析】分析:先求曲线交点,再确定被积上下限,最后根据定积分求面积.详解:因为,所以所以由直线与曲线围成的封闭图形的面积是,选B.点睛:利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.4、B【解题分析】

由题意得,得到复数在复平面内对应的点,即可作出解答.【题目详解】由题意得,e2i=cos2+isin2,∴复数在复平面内对应的点为(cos2,sin2).∵2∈,∴cos2∈(-1,0),sin2∈(0,1),∴e2i表示的复数在复平面中对应的点位于第二象限,故选B.【题目点拨】本题主要考查了复数坐标的表示,属于基础题.5、D【解题分析】

由椭圆方程得出即可【题目详解】由可得,即所以长轴长为故选:D【题目点拨】本题考查的是由椭圆的方程得长轴长,较简单6、B【解题分析】

计算平均数,可得样本中心点,代入线性回归方程,即可求得a的值.【题目详解】依题意,得(0+1+4+5+6+8)=4,(1.3+1.8+5.6+6.1++7.4+9.3)=5.25.又直线y=0.95x+a必过中心点(),即点(4,5.25),于是5.25=0.95×4+a,解得a=1.45.故选B.【题目点拨】本题考查线性回归方程,利用线性回归方程恒过样本中心点是关键.7、A【解题分析】试题分析:由程序框图可知该算法是计算数列的前2016项和,根据,所以。考点:1.程序框图;2.数列求和。8、A【解题分析】

根据二项展开式的通项,可得,令,即可求得的系数,得到答案.【题目详解】由题意,二项式的展开式的通项为,令,可得,即展开式中的系数为,故选A.【题目点拨】本题主要考查了二项式定理的应用,其中解答中熟记二项展开式的通项是解答本题的关键,着重考查了推理与运算能力,属于基础题.9、B【解题分析】分析:设抛物线上点,由点到直线距离公式,得点A到直线的距离,由二次函数的性质,可求最小距离.详解:设抛物线上的任意一点,由抛物线的性质点A到直线的距离易得由二次函数的性质可知,当时,最小距离.故选B.点睛:本题考查抛物线的基本性质,点到直线距离公式,考查学生转化能力和计算能力.10、A【解题分析】

利用函数的奇偶性,排除选项B,D,再利用特殊点的函数值判断即可.【题目详解】函数为非奇非偶函数,排除选项B,D;当-1<x<0,f(x)<0,排除选项C故选:A.【题目点拨】本题考查函数的图象的判断,函数的奇偶性以及函数的图象的变化趋势是判断函数的图象的常用方法.11、B【解题分析】

将直线l的参数方程化为普通方程,得出该直线的斜率,即可得出该直线的倾斜角。【题目详解】直线l的直角坐标方程为x-y-2=0,斜率k=tanα=1,所以α=45【题目点拨】本题考查利用直线的参数方程求直线的倾斜角,参数方程化为普通方程是常用方法,而参数方程化为普通方程有两种常见的消参方法:①加减消元法;②代入消元法;③平方消元法。12、C【解题分析】

根据空间向量的数量积等于0,列出方程,即可求解.【题目详解】由空间向量,又由,即,解得,故选C.【题目点拨】本题主要考查了空间向量中垂直关系的应用,其中解答中根据,利用向量的数量积等于0,列出方程即可求解,着重考查了推理与运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、60°.【解题分析】

计算出的值,得出渐近线的斜率,得出两渐近线的倾斜角,从而可得出两渐近线的夹角.【题目详解】由题意知,双曲线的虚轴长为,得,所以,双曲线的渐近线方程为,两条渐近线的倾斜角分别为、,因此,两渐近线的夹角为,故答案为.【题目点拨】本题考查双曲线渐近线的夹角,解题的关键就是求出渐近线方程,根据渐近线的倾斜角来求解,考查运算求解能力,属于基础题.14、【解题分析】

利用分类讨论思想的应用和分类讨论思想的应用求出的取值范围.【题目详解】解:当时,由,解得或,在,上是增函数,且,,所以在上有零点,由题意知,由故或,又.当时,解得有两个零点,不合题意.当时,增区间为,减区间为和且,当时,则由单调性及极值可知,有唯一零点,但零点大于0,当时,则有三个零点,∴无论正负都不合适.所以.故答案为:.【题目点拨】本题考查函数导数的应用,利用函数的导数求函数的单调区间和最值,函数的零点和方程的根的关系式的的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.15、1【解题分析】

先根据侧面展开是面积为的半圆算出圆锥的母线,再根据侧面展开半圆的弧长即底面圆的周长求解.【题目详解】如图所示:设圆锥的半径为r,高为h,母线长为l,因为圆锥的侧面展开图是半径为l,面积为的半圆面,所以,解得,因为侧面展开半圆的弧长即底面圆的周长,所以,故圆锥的底面半径.【题目点拨】本题考查圆锥的表面积的相关计算.主要依据侧面展开的扇形的弧长即底面圆的半径,扇形的弧长和面积计算公式.16、220.【解题分析】分析:根据学生的人数比,利用分层抽样的定义即可得到结论.详解:设全校总共抽取n人,则:故答案为220人.点睛:本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键,比较基础.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)由矩阵的特征向量求法,解方程可得,再由矩阵的逆矩阵可得所求;(2)求得,再由矩阵的多次变换,可得所求.【题目详解】解:(1)设矩阵的特征向量对应的特征值为,特征向量对应的特征值为,则,则.(2)因,所以.【题目点拨】本题考查矩阵的特征值和特征向量,考查矩阵的逆矩阵,以及矩阵的变换,考查运算求解能力,属于中档题.18、(1)(2)函数在上递增,在上递减【解题分析】

(1)求导数,将代入导函数,值为0,解得.(2)当时,代入函数求导,根据导数的正负确定函数单调性.【题目详解】解:(1)函数的定义域为又,依题有,解得.(2)当时,,令,解得,(舍)当时,,递增,时,,递减;所以函数在上递增,在上递减.【题目点拨】本题考查了函数的切线,函数的单调性,意在考查学生的计算能力.19、(1);(2).【解题分析】

(1)设出C点的坐标,利用终点减起点坐标求得和的坐标,利用向量运算坐标公式,得到满足的条件求得结果;(2)利用向量坐标运算公式求得,,利用向量垂直的条件,得到等量关系式,求得结果.【题目详解】(1)因为,,所以.设点C的坐标为,则.由,得解得,,所以点C的坐标为.(2),,因为与垂直,所以,解得.【题目点拨】该题考查的是有关向量的问题,涉及到的知识点有向量坐标运算公式及法则,向量垂直的条件,数量积坐标公式,属于简单题目.20、(1);(2)最大值为【解题分析】

(1)确定函数定义域,求导,导函数大于等于0恒成立,利用参数分离得到答案.(2)当时,代入函数求导得到函数的单调区间,依次判断每个区间的零点情况,综合得到答案.【题目详解】解:(1)的定义域为在上恒成立,即即实数的取值集合是(2)时,,即在区间和单调增,在区间上单调减.在最小值为且在上没有零点.要想函数在上有零点,并考虑到在区间上单调且上单减,只须且,易检验当时,且时均有,即函数在上有上有零点.的最大值为【题目点拨】本题考查了函数单调性,恒成立问题,参数分离法,零点问题,综合性强难度大,需要灵活运用导数各个知识点.21、(1),;(2)为正偶数;(3);【解题分析】

(1)由题意得:集合表示方程解的集合,由于或,即可得到集合的元素个数;利用倒序相加法及,即可得到答案;(2)假设存在,对分奇数和偶数两种情况进行讨论;(3)利用类比推理和分类计数原理可得的值.【题目详解】(1)由题意得:集合表示方程解的集合,由于或,所以方程中有个,个,从而可得到解的情况共有个,所以.令,所以,所以,所以,即.(2)当取偶数时,中所有项都是中的项.由题意:均在数列中,当时,,说明数列的第项是数列中的第项.当取奇数时,因为不是整数,所以数列的所有项都不在数列中.综上所述:为正偶数.(3)当时,有①当时,②又对任意,都有③所以即为的系数,可取①中、②中的1;或①中、②中的;或①中、②中的;或①中的、②中的;所以.【题目点拨】本题第(1)问考查对集合新定义的理解;第(2)问考查等比数列的控究性问题;第(3)问考查类比推理与计数原理相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论