扬州市扬州中学2024届数学高二第二学期期末统考模拟试题含解析_第1页
扬州市扬州中学2024届数学高二第二学期期末统考模拟试题含解析_第2页
扬州市扬州中学2024届数学高二第二学期期末统考模拟试题含解析_第3页
扬州市扬州中学2024届数学高二第二学期期末统考模拟试题含解析_第4页
扬州市扬州中学2024届数学高二第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

扬州市扬州中学2024届数学高二第二学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列中,,则()A.20 B.30 C.40 D.502.公元263年左右,我国数学家刘徽发现当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了割圆术.利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的的值为()(参考数据:,,)A.12 B.24 C.48 D.963.若不等式对一切恒成立,则的取值范围是()A. B.C. D.4.已知函数,若的两个极值点的等差中项在区间上,则整数()A.1或2 B.2 C.1 D.0或15.某科研机构为了研究中年人秃头是否与患有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:有心脏病无心脏病秃发20300不秃发5450根据表中数据得,由断定秃发与患有心脏病有关,那么这种判断出错的可能性为()附表:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.0.1 B.0.05C.0.01 D.0.0016.函数的零点所在的区间是()A. B. C. D.7.已知函数的图象关于点对称,则在上的值域为()A. B. C. D.8.如图,在正方体中,分别是,的中点,则四面体在平面上的正投影是A. B. C. D.9.用秦九韶算法求次多项式,当时,求需要算乘方、乘法、加法的次数分别为()A. B. C. D.10.下列命题正确的是()A.若,则B.“”是“”的必要不充分条件C.命题“”、“”、“”中至少有一个为假命题D.“若,则,全为0”的逆否命题是“若,全不为0,则”11.阅读下面的程序框图,运行相应的程序,若输入的值为24,则输出的值为()A.0 B.1 C.2 D.312.由0,1,2,3组成无重复数字的四位数,其中0与2不相邻的四位数有A.6个 B.8个 C.10个 D.12个二、填空题:本题共4小题,每小题5分,共20分。13.若函数的反函数为,且,则的值为________14.在区间上随机取一个数,若使直线与圆有交点的概率为,则__________.15.为了宣传校园文化,让更多的学生感受到校园之美,某校学生会组织了6个小队在校园最具有代表性的3个地点进行视频拍摄,若每个地点至少有1支小队拍摄,则不同的分配方法有_____种(用数字作答)16.在直角坐标系中,已知,,若直线上存在点,使得,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列的前项和为,且满足.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.18.(12分)某地区举办知识竞答比赛,比赛共有四道题,规则如下:答题过程中不论何时,若选手出现两题答错,则该选手被淘汰分数记为,其它情况下,选手每答对一题得分,此外若选手存在恰连续3次答对题目,则额外加分,若次全答对,则额外加分.已知某选手每次答题的正确率都是,且每次答题结果互不影响.求该选手恰答对道题的概率;记为该选手参加比赛的最终得分,求的分布列与数学期望.19.(12分)(1)当时,求证:;(2)当时,恒成立,求实数的取值范围.20.(12分)如图,在四棱锥中,底面ABCD为菱形,平面ABCD,,,E,F分别是BC,PC的中点.Ⅰ证明:;Ⅱ设H为线段PD上的动点,若线段EH长的最小值为,求直线PD与平面AEF所成的角的余弦值.21.(12分)已知椭圆满足:过椭圆C的右焦点且经过短轴端点的直线的倾斜角为.(Ⅰ)求椭圆的方程;(Ⅱ)设为坐标原点,若点在直线上,点在椭圆C上,且,求线段长度的最小值.22.(10分)在平面直角坐标系中,已知直线的参数方程为(为参数).以坐标原点为极点,以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)若曲线上的点到直线的最大距离为6,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】等差数列中,,,.故选A.2、B【解题分析】

列出循环过程中与的数值,满足判断框的条件即可结束循环.【题目详解】解:模拟执行程序,可得:

不满足条件,

不满足条件,

满足条件,退出循环,输出的值为.

故选:B.【题目点拨】本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.3、C【解题分析】

本题是通过x的取值范围推导出a的取值范围,可先将a与x分别放于等式的两边,在通过x的取值范围的出a的取值范围。【题目详解】,因为所以所以,解得【题目点拨】本题主要考察未知字母的转化,可以先将需要求解的未知数和题目已给出未知数区分开来,再进行求解。4、B【解题分析】

根据极值点个数、极值点与导函数之间的关系可确定的取值范围,结合为整数可求得结果.【题目详解】由题意得:.有两个极值点,,解得:或.方程的两根即为的两个极值点,,综上可得:,又是整数,.故选:.【题目点拨】本题考查极值与导数之间的关系,关键是明确极值点是导函数的零点,从而利用根与系数关系构造方程.5、D【解题分析】

根据观测值K2,对照临界值得出结论.【题目详解】由题意,,根据附表可得判断秃发与患有心脏病有关出错的可能性为.故选D.【题目点拨】本题考查了独立性检验的应用问题,理解临界值表格是关键,是基础题.6、B【解题分析】分析:根据基本初等函数的性质,确定函数在上是增函数,且满足,,结合函数的零点判定定理可得函数的零点所在的区间.详解:由基本初等函数可知与均为在上是增函数,所以在上是增函数,又,根据函数零点的判定定理可得函数的零点所在的区间是.故选B.点睛:本题主要考查求函数的值,函数零点的判定定理,属于基础题.7、D【解题分析】由题意得,函数的图象关于点对称,则,即,解得,所以,则,令,解得或,当,则,函数单调递减,当,则,函数单调递增,所以,,所以函数的值域为,故选D.点睛:本题考查了函数的基本性质的应用,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的最值,其中解答中根据函数的图象关于点对称,列出方程组,求的得值是解得关键,着重考查了学生分析问题和解答问题的能力.8、C【解题分析】分析:根据正投影的概念判断即可.详解:根据正投影的概念判断选C.选C.点睛:本题考查正投影的概念,需基础题.9、D【解题分析】求多项式的值时,首先计算最内层括号内一次多项式的值,即然后由内向外逐层计算一次多项式的值,即..….这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.∴对于一个n次多项式,至多做n次乘法和n次加法故选D.10、C【解题分析】分析:根据命题条件逐一排除求解即可.详解:A.若,则,当a为0时此时结论不成立,故错误;B.“”是“”的必要不充分条件,当x=4时成立,故正确结论应是充分不必要;D.“若,则,全为0”的逆否命题是“若,全不为0,则”应该是若,不全为0,故错误,所以综合可得选C点睛:考查对命题的真假判定,此类题型逐一对答案进行排除即可,但注意思考的全面性不可以掉以轻心,属于易错题.11、C【解题分析】

根据给定的程序框图,逐次循环计算,即可求解,得到答案.【题目详解】由题意,第一循环:,能被3整除,不成立,第二循环:,不能被3整除,不成立,第三循环:,不能被3整除,成立,终止循环,输出,故选C.【题目点拨】本题主要考查了程序框图的识别与应用,其中解答中根据条件进行模拟循环计算是解答的关键,着重考查了运算与求解能力,属于基础题.12、B【解题分析】分析:首先求由0,1,2,3组成无重复数字的四位数:先排千位数,有种排法,再排另外3个数,有种排法,利用乘法原理能求出组成没有重复数字的四位数的个数;然后求数字0,2相邻的情况:,先把0,2捆绑成一个数字参与排列,再减去0在千位的情况,由此能求出其中数字0,2相邻的四位数的个数.最后,求得0与2不相邻的四位数详解:由数字0,1,2,3组成没有重复数字的四位数有:.

其中数字0,2相邻的四位数有:则0与2不相邻的四位数有。故选B点睛:本题考查排列数的求法,考查乘法原理、排列、捆绑法,间接法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据反函数的解析式,求得函数的解析式,代入即可求得的值.【题目详解】因为函数的反函数为,且令则所以即函数()所以故答案为:【题目点拨】本题考查了反函数的求法,求函数值,属于基础题.14、【解题分析】

分析:先根据直线与圆相交的关系得出不等式得b的取值范围,然后由概率为建立等式求解即可.详解:圆心到直线的距离:故答案为:点睛:考查直线与圆的位置关系,然后再结合几何概型求解即可.属于中档题.15、540【解题分析】

首先将6个小队分成三组,有三种组合,然后再分配,即可求出结果.【题目详解】(1)若按照进行分配有种方案;(2)若按照进行分配有种方案;(3)若按照进行分配有种方案;由分类加法原理,所以共有种分配方案.【题目点拨】本题主要考查分类加法计数原理,以及排列组合的相关知识应用.易错点是平均分配有重复,注意消除重复.16、【解题分析】

设点的坐标为,根据条件求出动点的轨迹方程,可得知动点的轨迹为圆,然后将问题转化为直线与动点的轨迹圆有公共点,转化为圆心到直线的距离不大于半径,从而列出关于实数的不等式,即可求出实数的值.【题目详解】设点的坐标为,,即,化简得,则动点的轨迹是以为圆心,半径为的圆,由题意可知,直线与圆有公共点,则,解得或.因此,实数的取值范围是.故答案为:.【题目点拨】本题考查动点的轨迹方程,同时也考查了利用直线与圆的位置关系求参数,解题的关键就是利用距离公式求出动点的轨迹方程,考查化归与转化思想的应用,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】分析:(1)利用项和公式求出数列的通项公式.(2)先化简得,再利用裂项相消法求数列的前项和.详解:(1)由得,当时,,即,又,当时符合上式,所以通项公式为.(2)由(1)可知.点睛:(1)本题主要考查数列通项的求法,考查裂项相消法求和,意在考查学生对这些知识的掌握水平和计算能力.(2)类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等.用裂项相消法求和.18、;.【解题分析】

(1)通过二项分布公式即可得到概率;(2)可能的取值为,分别求出所求概率,于是得到分布列和数学期望.【题目详解】该选手每次答题的正确率都是,四道题答对的情况有种恰答对道题的概率由题可能的取值为,,的分布列如下.【题目点拨】本题主要考查二项分布的运用,数学期望与分布列的相关计算,意在考查学生的分析能力,转化能力,计算能力,难度中等.19、(1)见解析(2)【解题分析】

(1)根据不等式的特征,分,,,构造,研究其单调性即可.(2)将当时,恒成立,转化为时,恒成立,当时,显然成立,当且时,转化为,,利用(1)的结论求解.【题目详解】(1)当时,原不等式左边与右边相等,当时,原不等式,等价于,令,所以,所以在上递增,,所以,当时,原不等式,等价于,令,所以,所以在上递增,,所以,综上:当时,;(2)因为当时,恒成立,所以当时,恒成立,当时,显然成立,当且时,恒成立,由(1)知当且时,,所以,所以.实数的取值范围是.【题目点拨】本题主要考查导数于函数的单调性研究不等式恒成立问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.20、(1)见解析;(2)【解题分析】

(1)根据正三角形性质得AE⊥BC,即得AE⊥AD,再根据PA⊥平面ABCD得AE⊥PA,由线面垂直判定定理得EA⊥平面PAD,即得AE⊥PD;(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得平面AEF一个法向量,由向量数量积得向量夹角,最后根据向量夹角与线面角互余关系得结果.【题目详解】(1)连接AC,因为底面ABCD为菱形,所以三角形ABC为正三角形,所以AE⊥BC,又AD//BC,所以AE⊥AD,则又PA⊥平面ABCD,所以AE⊥PA,由线面垂直判定定理得EA⊥平面PAD,所以AE⊥PD(2)过A作AH⊥PD于H,连HE,由(1)得AE⊥平面PAD所以EH⊥PD,即EH=,∵AE=,∴AH=,∴PA=2以A为原点,AE,AD,AP分别为x,y,z轴建立空间直角坐标系,A(0,0,0),E(,0,0),D(0,2,0),C(,1,0),P(0,0,2)∴F(,,1)∵,,∴平面AEF的法向量又,∴所以直线PD与平面AEF所成的角的余弦值为【题目点拨】本题主要考查线面垂直的判定和性质及利用空间向量求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论