




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届成都市重点中学高二数学第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知A=B={1,2,3,4,5},从集合A到B的映射满足:①;②的象有且只有2个,求适合条件的映射的个数为()A.10 B.20 C.30 D.402.某市一次高二年级数学统测,经抽样分析,成绩近似服从正态分布,且,则()A.0.2 B.0.3 C.0.4 D.0.53.已知…,依此规律,若,则的值分别是()A.48,7 B.61,7 C.63,8 D.65,84.设复数(是虚数单位),则()A.i B. C. D.5.函数的导函数为,若不等式的解集为,且的极小值等于,则的值是()。A. B. C.5 D.46.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x34y12对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是A. B. C. D.7.下列5个命题中:①平行于同一直线的两条不同的直线平行;②平行于同一平面的两条不同的直线平行;③若直线与平面没有公共点,则;④用一个平面截一组平行平面,所得的交线相互平行;⑤若,则过的任意平面与的交线都平行于.其中真命题的个数是()A.2 B.3 C.4 D.58.有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X2)等于A. B.C. D.19.在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于()(参考公式:)A.2 B. C.4 D.10.函数的图象大致为()A. B. C. D.11.已知α,β是相异两个平面,m,n是相异两直线,则下列命题中正确的是()A.若m∥n,m⊂α,则n∥α B.若m⊥α,m⊥β,则α∥βC.若m⊥n,m⊂α,n⊂β,则α⊥β D.若α∩β=m,n∥m,则n∥β12.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A为“第一次取到的是奇数”,B为“第二次取到的是3的整数倍”,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,其中,若与共线,则的最小值为__________.14.设,若是关于的方程的一个虚根,则的取值范围是____.15.如图在中,,,点是外一点,,则平面四边形面积的最大值是___________.16.已知双曲线的离心率为,一条渐近线为,抛物线的焦点为F,点P为直线与抛物线异于原点的交点,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(Ⅰ)求函数单调递增区间;(Ⅱ)当时,求函数的最大值和最小值.18.(12分)已知椭圆C:,点P(0,1).(1)过P点作斜率为k(k>0)的直线交椭圆C于A点,求弦长|PA|(用k表示);(2)过点P作两条互相垂直的直线PA,PB,分别与椭圆交于A、B两点,试问:直线AB是否经过一定点?若存在,则求出定点,若不存在,则说明理由?19.(12分)已知函数.(1)若不等式在上有解,求的取值范围;(2)若对任意的均成立,求的最小值.20.(12分)已知函数().(Ⅰ)若在处的切线过点,求的值;(Ⅱ)若恰有两个极值点,().(ⅰ)求的取值范围;(ⅱ)求证:.21.(12分)已知直线的参数方程是,在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)将曲线的极坐标方程化为直角坐标方程;(2)设直线与轴的交点是,是曲线上一动点,求的最大值.22.(10分)已知函数.(1)若,解不等式;(2)若不等式对任意的实数恒成立,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:将元素按从小到大的顺序排列,然后按照元素在中的象有且只有两个进行讨论.详解:将元素按从小到大的顺序排列,因恰有两个象,将元素分成两组,从小到大排列,有一组;一组;一组;一组,中选两个元素作象,共有种选法,中每组第一个对应集合中的较小者,适合条件的映射共有个,故选D.点睛:本题考查映射问题并不常见,解决此类问题要注意:()分清象与原象的概念;()明确对应关系.2、A【解题分析】
根据正态分布的对称性求出P(X≥90),即可得到答案.【题目详解】∵X近似服从正态分布N(84,σ2),.∴,故选:A.【题目点拨】本题考查正态分布曲线的特点及曲线所表示的意义,抓住正态分布曲线的对称性即可解题,属于基础题.3、C【解题分析】
仔细观察已知等式的数字可发现:,根据此规律解题即可.【题目详解】由,
,
,
归纳可得,故当时,,
故选C.【题目点拨】本题通过观察几组等式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).4、D【解题分析】
先化简,结合二项式定理化简可求.【题目详解】,,故选D.【题目点拨】本题主要考查复数的运算和二项式定理的应用,逆用二项式定理要注意配凑出定理的结构形式.5、D【解题分析】
求导数,利用韦达定理,结合的极小值等于,即可求出的值,得到答案.【题目详解】依题意,函数,得的解集是,于是有,解得,∵函数在处取得极小值,∴,即,解得,故选:D.【题目点拨】本题主要考查了利用导数研究函数的极值,考查韦达定理的运用,着重考查了学生分析解决问题的能力,比较基础.6、D【解题分析】
根据的数值变化规律推测二者之间的关系,最贴切的是二次关系.【题目详解】根据实验数据可以得出,近似增加一个单位时,的增量近似为2.5,3.5,4.5,6,比较接近,故选D.【题目点拨】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.7、C【解题分析】
根据平行公理判定①的真假;根据线线位置关系,判定②的真假;根据线面平行的概念,判定③的真假;根据面面平行的性质,判断④的真假;根据线面平行的性质,判断⑤的真假.【题目详解】对于①,根据平行公理,平行于同一直线的两条不同的直线平行,①正确;对于②,平行于同一平面的两条不同的直线,可能平行、异面或相交;②错误;对于③,根据线面平行的概念,若直线与平面没有公共点,所以,③正确;对于④,根据面面平行的性质,用一个平面截一组平行平面,所得的交线相互平行,④正确;对于⑤,根据线面平行的性质,若,则过的任意平面与的交线都平行于,⑤正确.故选:C【题目点拨】本题主要考查线面关系、面面关系相关命题的判定,熟记平面的性质,平行公理,线面位置关系,面面位置关系即可,属于常考题型.8、C【解题分析】
根据超几何分布的概率公式计算各种可能的概率,得出结果【题目详解】由题意,知X取0,1,2,X服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P(X=0)=,P(X=1)=,P(X=2)=,于是P(X<2)=P(X=0)+P(X=1)=故选C【题目点拨】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.9、B【解题分析】
如图所示,设底面正方形的中心为,正四棱锥的外接球的球心为,半径为.则在中,有,再根据体积为可求及,在中,有,解出后可得正确的选项.【题目详解】如图所示,设底面正方形的中心为,正四棱锥的外接球的球心为,半径为.设底面正方形的边长为,正四棱锥的高为,则.因为该正四棱锥的侧棱长为,所以,即……①又因为正四棱锥的体积为4,所以……②由①得,代入②得,配凑得,,即,得或.因为,所以,再将代入①中,解得,所以,所以.在中,由勾股定理,得,即,解得,所以此球的半径等于.故选B.【题目点拨】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.10、C【解题分析】
根据奇偶性以及特殊值即可排除。【题目详解】因为=,所以为奇函数图像关于原点对称,排除BD,因为,所以排除A答案,选择D【题目点拨】本题主要考查了函数图像的判断方法,常利用函数的奇偶性质,特殊值法进行排除,属于中等题。11、B【解题分析】
在A中,根据线面平行的判定判断正误;在B中,由平面与平面平行的判定定理得α∥β;在C中,举反例即可判断判断;在D中,据线面平行的判定判断正误;【题目详解】对于A,若m∥n,m⊂α,则n∥α或n⊂α,故A错;对于B,若m⊥α,m⊥β,则由平面与平面平行的判定定理得α∥β,故B正确;对于C,不妨令α∥β,m在β内的射影为m′,则当m′⊥n时,有m⊥n,但α,β不垂直,故C错误;对于D,若α∩β=m,n∥m,则n∥β或n⊂β,故D错.故选:B.【题目点拨】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.12、B【解题分析】
由条件概率的定义,分别计算即得解.【题目详解】由题意事件为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有个事件由条件概率的定义:故选:B【题目点拨】本题考查了条件概率的计算,考查了学生概念理解,分类讨论,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据两个向量平行的充要条件,写出向量的坐标之间的关系,之后得出,利用基本不等式求得其最小值,得到结果.【题目详解】∵,,其中,且与共线∴,即∴,当且仅当即时取等号∴的最小值为.【题目点拨】该题考查的是有关向量共线的条件,涉及到的知识点有向量共线坐标所满足的条件,利用基本不等式求最值,属于简单题目.14、【解题分析】
设z=a+bi,(a,b∈R),则也是此方程的一个虚根,由方程有虚根可知,判别式为负数,据此可求出m的范围,再利用根与系数的关系可得,从而求出结果.【题目详解】设z=a+bi,(a,b∈R),则也是此方程的一个虚根,
z是关于x的方程x2+mx+m2−1=0的一个虚根,可得,即,则由根与系数的关系,,则,所以的取值范围是:.故答案为.【题目点拨】本题考查实系数多项式虚根成对定理,以及复数的模的求解,属中档题.15、.【解题分析】分析:利用余弦定理,设,设AC=BC=m,则.由余弦定理把m表示出来,利用四边形OACB面积为S=.转化为三角形函数问题求解最值.详解:△ABC为等腰直角三角形.∵OA=2OB=4,不妨设AC=BC=m,则.由余弦定理,42+22﹣2m2=16,∴..当时取到最大值.故答案为.点睛:(1)本题主要考查余弦定理和三角形的面积的求法,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设,再建立三角函数的模型.16、4【解题分析】
由双曲线的离心率求出渐近线的方程,然后求出直线与抛物线的交点的坐标,可得.【题目详解】双曲线中,,即,,不妨设方程为,由得或,即,抛物线中,∴.故答案为:4.【题目点拨】本题考查双曲线的几何性质,考查直线与抛物线相交问题,考查抛物线的焦半径公式.属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ),0【解题分析】
试题分析:(Ⅰ)因为通过对函数求导可得,所以要求函数的单调递增区间即要满足,即解可得x的范围.本小题要处理好两个关键点:三角的化一公式;解三角不等式.(Ⅱ)因为由(Ⅰ)可得函数在上递增,又因为所以可得是单调增区间,是单调减区间.从而可求结论.试题解析:(Ⅰ)单调区间为(Ⅱ)由知(Ⅰ)知,是单调增区间,是单调减区间所以,考点:1.函数的导数解决单调性问题.2.区间限制的最值问题.3.解三角不等式.18、(1);(2)直线AB过定点.【解题分析】
(1)先由题意得到直线PA的方程,联立直线与椭圆,得到A点坐标,再由弦长公式,即可求出结果;(2)先由题意,得到,直线的斜率必存在,设直线为,联立直线与椭圆方程,根据韦达定理,得到,再由,结合题意,求出,进而可得出结果.【题目详解】解:(1)把代入得:,所以(2)由题意可以,直线的斜率必存在,设直线为,有,所以,即直线AB过定点【题目点拨】本题主要考查椭圆的弦长,以及椭圆中的定点问题,熟记椭圆的标准方程以及椭圆的简单性质,即可求解,属于常考题型.19、(1);(2).【解题分析】
(1)先求的最大值,然后通过不等式寻找的范围.(2)由(1)知当时,,这样可得,于是由且,得,可放大为,放缩的目的是为了和可求.因此的范围可得.【题目详解】(1),由定理可知,函数的单调递增区间为,递减区间为.故,由题意可知,当,解得,故;当,由函数的单调性,可知在恒单调增,且恒大于零,故无解;综上:;(2)当时,,,,且,,,,的最小值为.【题目点拨】本题考查用导数研究证明不等式,研究不等式恒成立问题.解题中一要求有较高的转化与化归能力,二要求有较高的运算求解能力.第(1)小题中在解不等式时还要用到分类讨论的思想,第(2)小题用到放缩法,而且这里的放缩的理论根据就是由第(1)小题中函数的性质确定的,发现问题解决问题的能力在这里要求较高,本题难度较大.20、(Ⅰ)(Ⅱ)(ⅰ)(ⅱ)见证明【解题分析】
(Ⅰ)对函数进行求导,然后求出在处的切线的斜率,求出切线方程,把点代入切线方程中,求出的值;(Ⅱ)(ⅰ),,,分类讨论函数的单调性;当时,可以判断函数没有极值,不符合题意;当时,可以证明出函数有两个极值点,,故可以求出的取值范围;由(ⅰ)知在上单调递减,,且,由得,,又,.法一:先证明()成立,应用这个不等式,利用放缩法可以证明出成立;法二:令(),求导,利用单调性也可以证明出成立.【题目详解】解:(Ⅰ),又在处的切线方程为,即切线过点,(Ⅱ)(ⅰ),,,当时,,在上单调递增,无极值,不合题意,舍去当时,令,得,(),或;,在上单调递增,在上单调递减,在上单调递增,恰有个极值点,,符合题意,故的取值范围是(ⅱ)由(ⅰ)知在上单调递减,,且,由得,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肺结核病人的健康教育
- 完善客户投诉处理机制计划
- 肺癌患者的营养护理
- 秋季语言学习推广计划
- 跨文化管理的挑战与机遇计划
- 逻辑思维与推理训练活动安排计划
- 财务资金决策计划
- 班级尊重与包容氛围的构建计划
- 品牌沟通的有效策略计划
- 积极心理与职业幸福感提升计划
- 简易施工方案模板范本
- 注册建造师考前培训项目管理丁士昭
- 高中综合实践活动-调查问卷的设计教学设计学情分析教材分析课后反思
- 2023年04月中国海洋大学辅导员公开招聘25人(山东)笔试高频考点题库附答案解析
- 旅游规划与开发课程
- 户籍所在地(行政区划表)
- 隧道地表注浆施工技术交底
- DB63T 2106-2023 流量测验 雷达波测流系统流量系数率定规程
- GB/T 8905-2012六氟化硫电气设备中气体管理和检测导则
- GA/T 1073-2013生物样品血液、尿液中乙醇、甲醇、正丙醇、乙醛、丙酮、异丙醇和正丁醇的顶空-气相色谱检验方法
- FZ/T 62033-2016超细纤维毛巾
评论
0/150
提交评论