2024届安徽省黄山市徽州一中高二数学第二学期期末联考模拟试题含解析_第1页
2024届安徽省黄山市徽州一中高二数学第二学期期末联考模拟试题含解析_第2页
2024届安徽省黄山市徽州一中高二数学第二学期期末联考模拟试题含解析_第3页
2024届安徽省黄山市徽州一中高二数学第二学期期末联考模拟试题含解析_第4页
2024届安徽省黄山市徽州一中高二数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省黄山市徽州一中高二数学第二学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有()A.20种 B.30种 C.40种 D.60种2.双曲线的离心率等于2,则实数a等于()A.1 B. C.3 D.63.在复平面内,复数(i为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知变量,由它们的样本数据计算得到的观测值,的部分临界值表如下:0.100.050.0250.0100.0052.7063.8415.0246.6357.879以下判断正确的是()A.在犯错误的概率不超过0.05的前提下认为变量有关系B.在犯错误的概率不超过0.05的前提下认为变量没有关系C.有的把握说变量有关系D.有的把握说变量没有关系5.下列有关统计知识的四个命题正确的是()A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差C.线性回归方程对应的直线至少经过其样本数据点中的一个点D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位6.若(为虚数单位),则=()A.1 B. C.2 D.47.已知抛物线的焦点为F,过点F分别作两条直线,直线与抛物线C交于两点,直线与抛物线C交于点,若与直线的斜率的乘积为,则的最小值为()A.14 B.16 C.18 D.208.一车间为规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,测得的数据如下零件数(个)2345加工时间(分钟)264954根据上表可得回归方程,则实数的值为()A.37.3 B.38 C.39 D.39.59.下列命题正确的是()A.进制转换:B.已知一组样本数据为1,6,3,8,4,则中位数为3C.“若,则方程”的逆命题为真命题D.若命题:,,则:,10.某大学中文系共有本科生5000人,期中一、二、三、四年级的学生比为5:4:3:1,要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生A.100人 B.60人 C.80人 D.20人11.若函数图象上存在两个点,关于原点对称,则对称点为函数的“孪生点对”,且点对与可看作同一个“孪生点对”.若函数恰好有两个“孪生点对”,则实数的值为()A.0 B.2 C.4 D.612.设是定义在上的偶函数,且当时,,若对任意的,不等式恒成立,则实数的最大值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若命题“,使得成立”是假命题,则实数的取值范围是_______.14.若对甲、乙、丙3组不同的数据作线性相关性检验,得到这3组数据的线性相关系数依次为0.83,0.72,-0.90,则线性相关程度最强的一组是_______.(填甲、乙、丙中的一个)15.引入随机变量后,下列说法正确的有:__________(填写出所有正确的序号).①随机事件个数与随机变量一一对应;②随机变量与自然数一一对应;③随机变量的取值是实数.16.已知函数有两个零点,,则下列判断:①;②;③;④有极小值点,且.则正确判断的个数是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2019年某地初中毕业升学体育考试规定:考生必须参加长跑、掷实心球、1分钟跳绳三项测试,三项测试各项20分,满分60分.某学校在初三上学期开始时,为掌握全年级学生1分钟跳绳情况,按照男女比例利用分层抽样抽取了100名学生进行测试,其中女生54人,得到下面的频率分布直方图,计分规则如表1:表1每分钟跳绳个数得分17181920(1)规定:学生1分钟跳绳得分20分为优秀,在抽取的100名学生中,男生跳绳个数大于等于185个的有28人,根据已知条件完成表2,并根据这100名学生测试成绩,能否有99%的把握认为学生1分钟跳绳成绩优秀与性别有关?表2跳绳个数合计男生28女生54合计100附:参考公式:临界值表:0.0500.0100.0013.8416.63510.828(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步.假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,全年级恰有2000名学生,所有学生的跳绳个数服从正态分布(用样本数据的平均值和方差估计总体的期望和方差,各组数据用中点值代替).①估计正式测试时,1分钟跳182个以上的人数(结果四舍五入到整数);②若在全年级所有学生中任意选取3人,正式测试时1分钟跳195个以上的人数为,求的分布列及期望.附:若随机变量服从正态分布,则,,..18.(12分)已知是定义在上的奇函数,且当时,.(Ⅰ)求的解析式;(Ⅱ)解不等式.19.(12分)等边的边长为,点,分别是,上的点,且满足(如图(1)),将沿折起到的位置,使二面角成直二面角,连接,(如图(2)).(1)求证:平面;(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.20.(12分)定义在上的函数满足:对任意的实数,存在非零常数,都有成立.(1)当时,若,,求函数在闭区间上的值域;(2)设函数的值域为,证明:函数为周期函数.21.(12分)某羽绒服卖场为了解气温对营业额的影响,随机记录了该店3月份上旬中某5天的日营业额y(单元:千元)与该地当日最低气温x(单位:∘C)的数据,如表:x258911y1210887(1)求y关于x的回归直线方程;(2)设该地3月份的日最低气温,其中μ近似为样本平均数,近似为样本方差,求参考公式:,计算参考值:..22.(10分)在平面直角坐标系中,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,的极坐标方程为.(1)求曲线的参数方程;(2)过原点且关于轴对称的两条直线与分别交曲线于和,且点在第一象限,当四边形周长最大时,求直线的普通方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A42=12种安排方法,甲在星期二有A32=6种安排方法,甲在星期三有A22=2种安排方法,总共有12+6+2=20种;故选A.2、A【解题分析】

利用离心率的平方列方程,解方程求得的值.【题目详解】由可得,从而选A.【题目点拨】本小题主要考查已知双曲线的离心率求参数,考查方程的思想,属于基础题.3、D【解题分析】分析:首先求得复数z,然后求解其共轭复数即可.详解:由复数的运算法则有:,则,其对应的点位于第四象限.本题选择D选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.4、A【解题分析】分析:根据所给的观测值,对照临界值表中的数据,即可得出正确的结论.详解:∵观测值,

而在观测值表中对应于3.841的是0.05,

∴在犯错误的概率不超过0.05的前提下认为变量有关系.

故选:A.点睛:本题考查了独立性检验的应用问题,是基础题.5、A【解题分析】分析:利用“卡方”的意义、相关指数的意义及回归分析的适用范围,逐一分析四个答案的真假,可得答案.详解:A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切,正确;B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差,错误对分类变量与的随机变量的观测值来说,越大,“与有关系”可信程度越大;故B错误;C.线性回归方程对应的直线至少经过其样本数据点中的一个点,错误,回归直线可能不经过其样本数据点中的任何一个点;D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位,错误,由回归方程可知变量每增加一个单位时,变量平均增加个单位.故选A.点睛:本题考查回归分析的意义以及注意的问题.是对回归分析的思想、方法小结.要结合实例进行掌握.6、A【解题分析】

根据复数的除法运算,化简得到,再由复数模的计算公式,即可求解.【题目详解】由题意,复数满足,则,所以,故选A.【题目点拨】本题主要考查了复数的运算,以及复数模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解题分析】

设出直线的斜率,得到的斜率,写出直线的方程,联立直线方程和抛物线方程,根据弦长公式求得的值,进而求得最小值.【题目详解】抛物线的焦点坐标为,依题意可知斜率存在且不为零,设直线的斜率为,则直线的斜率为,所以,有,有,,故,同理可求得.故,当且仅当时,等号成立,故最小值为,故选B.【题目点拨】本小题主要考查直线和抛物线的位置关系,考查直线和抛物线相交所得弦长公式,考查利用基本不等式求最小值,属于中档题.8、C【解题分析】

求出,代入回归方程,即可得到实数的值。【题目详解】根据题意可得:,,根据回归方程过中心点可得:,解得:;故答案选C【题目点拨】本题主要考查线性回归方程中参数的求法,熟练掌握回归方程过中心点是关键,属于基础题。9、A【解题分析】

根据进制的转化可判断A,由中位数的概念可判断B,写出逆命题,再判断其真假可判断C.根据全称命题的否定为特称命题,可判断D.【题目详解】A.,故正确.B.样本数据1,6,3,8,4,则中位数为4.故不正确.C.“若,则方程”的逆命题为:“方程,则”,为假命题,故不正确.D.若命题:,.则:,,故不正确.故选:A【题目点拨】本题考查了进制的转化、逆命题,中位数以及全称命题的否定,属于基础题.10、C【解题分析】

要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,

则应抽二年级的学生人数为:

(人).

故答案为80.11、A【解题分析】分析:由题可知当时,与恰有两个交点.根据函数的导数确定的图象,即可求得实数的值.详解:由题可知,当时,与恰有两个交点.函数求导()易得时取得极小值;时取得极大值另可知,所得函数图象如图所示.当,即时与恰有两个交点.当时,恰好有两个“孪生点对”,故选A.点睛:本题主要考查新定义,通过审题,读懂题意,选择解题方向,将问题转化为当时,与恰有两个交点是解题关键.12、B【解题分析】

由题意,函数在上单调递减,又由函数是定义上的偶函数,得到函数在单调递增,把不等式转化为,即可求解.【题目详解】易知函数在上单调递减,又函数是定义在上的偶函数,所以函数在上单调递增,则由,得,即,即在上恒成立,则,解得,即的最大值为.【题目点拨】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据原命题为假,可得,都有;当时可知;当时,通过分离变量可得,通过求解最值得到结果.【题目详解】由原命题为假可知:,都有当时,,则当时,又,当且仅当时取等号综上所述:本题正确结果:【题目点拨】本题考查根据命题的真假性求解参数范围,涉及到恒成立问题的求解.14、丙【解题分析】

根据两个变量y与x的回归模型中,相关系数|r|的绝对值越接近于1,其相关程度越强即可求解.【题目详解】两个变量y与x的回归模型中,它们的相关系数|r|越接近于1,这个模型的两个变量线性相关程度就越强,在甲、乙、丙中,所给的数值中﹣0.90的绝对值最接近1,所以丙的线性相关程度最强.故答案为丙.【题目点拨】本题考查了利用相关系数判断两个变量相关性强弱的应用问题,是基础题.15、③【解题分析】

要判断各项中对随机变量描述的正误,需要牢记随机变量的定义.【题目详解】引入随机变量,使我们可以研究一个随机实验中的所有可能结果,所以随机变量的取值是实数,故③正确.【题目点拨】本题主要考查随机变量的相关定义,难度不大.16、1【解题分析】

对函数进行求导,然后分类讨论函数的单调性,由题意可以求出的取值范围,然后对四个判断逐一辨别真假即可.【题目详解】,.当时,,函数是单调递增函数,而,所以函数只有一个零点,不符合题意;当时,当时,,函数单调递增,当时,,函数递减,故函数的最小值为,要想函数有两个零点,则必有,故判断①不对;对于②:,取,,所以,故判断②不对;对于④:构造函数,,所以函数是上单调递增,故,而,所以,故本判断是正确的;对于③:因为,而,所以有,故本判断是错误的,故正确的判断的个数为1.【题目点拨】本题考查了利用导数研究函数的零点、极值点,考查了推理论证能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不能有99%的把握认为认为学生1分钟跳绳成绩优秀与性别有关;(2)①约为1683人,②见解析【解题分析】

(1)根据题目所给信息,完成表2,根据表中数据计算K2的观测值k,查表判断即可;

(2)利用频率分布直方图求解平均数和标准差,推出正式测试时,μ=185+10=195,σ=13,μ-σ=1.

①,由此可推出人数.

②由正态分布模型,全年级所有学生中任取1人,每分钟跳绳个数195以上的概率为0.5,得到ξ服从,求出ξ的分布列,然后求解期望即可.【题目详解】(1)在抽取的

100

人中

满分的总人数为

100×(0.03+0.01+0.008)×10=48人,男生满分的有

28

人,所以女生满分的有

20

人,男生共有

46

人,女生

54

人,所以男生跳绳个数不足

185

个的有46−28=18人,女生跳绳个数不足

185

的有

54−20=34

人,完成表2如下图所示:跳绳个数合计男生281846女生203454合计4852100由公式可得,因为,所以不能有99%的把握认为认为学生1分钟跳绳成绩优秀与性别有关;(2)①根据频率分布直方图可得初三上学期跳绳个数的平均数:,而,所以正式测试时,,故服从正态分布,且,则,所以,故正式测试时,1分钟跳1个以上的人数约为1683人;②,服从,,,,,则的分布列为:0123.【题目点拨】本题考查了频率分布直方图中平均数的计算、独立性检验和正态分布的问题,以及二项式分布,主要考查分析数据,处理数据的能力,综合性强,属中档题.18、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)当时,,因为是定义在上的奇函数,所以可得;,进而求出解析式.(Ⅱ)由(Ⅰ)可得出函数的单调性,利用单调性解不等式.【题目详解】(Ⅰ)当时,,因为是定义在上的奇函数所以;当时,;所以(Ⅱ)易知当时,单调递增,又是定义在上的奇函数,所以在上单调递增,所以不等式等价于,解得,所以原不等式的解集为.【题目点拨】本题考查函数的奇偶性与单调性,解题的关键是由奇偶性先求出解析式,属于一般题.19、(1)证明见解析;(2)存在点,.【解题分析】

(1)通过证明,即可证明平面;(2)以为坐标原点,以射线、、分别为轴、轴、轴的正半轴建立空间直角坐标系,设,然后并求出平面的一个法向量及的坐标,最后根据即可求出的值及的长度.【题目详解】(1)证明题图(1)中,由已知可得:,,.从而.故得,所以,.所以题图(2)中,,,所以为二面角的平面角,又二面角为直二面角,所以,即,因为且、平面,所以平面.(2)解存在.由(1)知,平面.以为坐标原点,以射线、、分别为轴、轴、轴的正半轴建立空间直角坐标系,如图,过作交于点,设,则,,,易知,,,所以.因为平面,所以平面的一个法向量为.因为直线与平面所成的角为,所以,解得.所以,满足,符合题意.所以在线段上存在点,使直线与平面所成的角为,此时.【题目点拨】本题主要考查线面垂直的证明及通过建立空间直角坐标系并表示出平面的法向量及直线的方向向量的坐标,解决已知直线和平面所成的角求参数的值问题,属中等难度题.20、(1)(2)见解析【解题分析】分析:(1)利用,分别求得函数在区间上的表达式,并求得其值域.(2)首先判断出值域相同.当时,利用求得的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论