版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省淮南市高二数学第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足,则的值是()A. B. C. D.2.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A. B. C. D.3.已知离散型随机变量ξ~B(20,0.9),若随机变量η=5ξ,则η的数学期望EηA.100 B.90 C.18 D.4.54.已知函数的导函数为,若,则函数的图像可能是()A. B. C. D.5.设则()A.都大于2 B.至少有一个大于2C.至少有一个不小于2 D.至少有一个不大于26.已知下列说法:①对于线性回归方程,变量增加一个单位时,平均增加5个单位;②甲、乙两个模型的分别为0.98和0.80,则模型甲的拟合效果更好;③对分类变量X与Y,随机变量的观测值k越大,则判断“X与Y有关系”的把握程度越大;④两个随机变量的线性相关性越强,则相关系数就越接近1.其中说法错误的个数为()A.1 B.2 C.3 D.47.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件,“骰子向上的点数是”为事件,则事件中恰有一个发生的概率是()A. B. C. D.8.已知函数的图象在点处的切线为,若也与函数,的图象相切,则必满足()A. B.C. D.9.在中,若,则自然数的值是()A.7 B.8 C.9 D.1010.已知x,y的取值如下表示:若y与x线性相关,且,则a=()x0134y2.24.34.86.7A.2.2 B.2.6 C.2.8 D.2.911.在一组数据为,,…,(,不全相等)的散点图中,若这组样本数据的相关系数为,则所有的样本点满足的方程可以是()A. B.C. D.12.命题“”的否定为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,,其中i为虚数单位,若为纯虚数,则实数a的值为_______.14.已知函数有四个零点,则实数的取值范围是__________.15.已知函数,则________16.若实数满足不等式组则的最小值是_____,最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心(1)求证:平面平面;(2)若,求二面角的余弦值.18.(12分)设数列an是公差不为零的等差数列,其前n项和为Sn,a1=1.若a1(I)求an及S(Ⅱ)设bn=1an+12-119.(12分)已知函数(1)解不等式;(2)若方程在区间有解,求实数的取值范围.20.(12分)已知的展开式中第三项与第四项二项式系数之比为.(1)求;(2)请答出展开式中第几项是有理项,并写出推演步骤(有理项就是的指数为整数的项).21.(12分)(本小题满分12分)已知,函数.(I)当为何值时,取得最大值?证明你的结论;(II)设在上是单调函数,求的取值范围;(III)设,当时,恒成立,求的取值范围.22.(10分)在中,,求的值;若,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
先用复数除法进行化简,之后求共轭复数即可.【题目详解】因为故:故其共轭复数为:故选:C.【题目点拨】本题考查复数的除法运算,涉及共轭复数,属基础题.2、B【解题分析】
解:根据题意,播下4粒种子恰有2粒发芽即4次独立重复事件恰好发生2次,由n次独立重复事件恰好发生k次的概率的公式可得,故选B.3、B【解题分析】
先利用二项分布的期望公式求得Eξ=20×0.9=18,由离散型随机变量的数学期望的性质,可求出随机变量η=5ξ的数学期望.【题目详解】由题设离散型随机变量ξ~B(20,0.9∴Eξ=20×0.9=18,∵η=5ξ,∴Eη=E(5ξ)=5Eξ=5×18=90.故选B.【题目点拨】“求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(4、D【解题分析】
根据导数的几何意义和,确定函数在上单调递减,在上单调递增,在上单调递减,即可得出结论.【题目详解】函数的导函数为,,∴函数在上单调递减,在上单调递增,在上单调递减,故选:D.【题目点拨】本题考查函数的图象与其导函数的关系,考查学生分析解决问题的能力,属于基础题.5、C【解题分析】
由基本不等式,a,b都是正数可解得.【题目详解】由题a,b,c都是正数,根据基本不等式可得,若,,都小于2,则与不等式矛盾,因此,至少有一个不小于2;当,,都等于2时,选项A,B错误,都等于3时,选项D错误.选C.【题目点拨】本题考查了基本不等式,此类题干中有多个互为倒数的项,一般都可以先用不等式求式子范围,再根据题目要求解题.6、B【解题分析】
根据回归分析、独立性检验相关结论来对题中几个命题的真假进行判断。【题目详解】对于命题①,对于回归直线,变量增加一个单位时,平均减少个单位,命题①错误;对于命题②,相关指数越大,拟合效果越好,则模型甲的拟合效果更好,命题②正确;对于命题③,对分类变量与,随机变量的观测值越大,根据临界值表,则犯错误的概率就越小,则判断“与有关系”的把握程度越高,命题③正确;对于命题④,两个随机变量的线性相关性越强,则相关系的绝对值越接近于,命题④错误.故选:B.【题目点拨】本题考查回归分析、独立性检验相关概念的理解,意在考查学生对这些基础知识的理解和掌握情况,属于基础题。7、B【解题分析】
由相互独立事件同时发生的概率得:事件,中恰有一个发生的概率是,得解.【题目详解】记“硬币正面向上”为事件,“骰子向上的点数是3”为事件,则∴事件,中恰有一个发生的概率是.故选:B.【题目点拨】本题考查相互独立事件同时发生的概率,考查运算求解能力,求解时注意识别概率模型.8、D【解题分析】
函数的导数为,图像在点处的切线的斜率为,切线方程为,即,设切线与相切的切点为,,由的导数为,切线方程为,即,∴,.由,可得,且,解得,消去,可得,令,,在上单调递增,且,,所以有的根,故选D.9、B【解题分析】
利用二项式的通项公式求出的表达式,最后根据,解方程即可求出自然数的值.【题目详解】二项式的通项公式为:,因此,,所以,解得.故选B.【题目点拨】本题考查了二项式定理的应用,考查了数学运算能力.10、B【解题分析】
求出,代入回归方程可求得.【题目详解】由题意,,所以,.故选:B.【题目点拨】本题考查回归直线方程,掌握回归直线方程的性质是解题关键.回归直线一定过中心点.11、A【解题分析】
根据相关系数的概念即可作出判断.【题目详解】∵这组样本数据的相关系数为,∴这一组数据,,…线性相关,且是负相关,∴可排除D,B,C,故选A【题目点拨】本题考查了相关系数,考查了正相关和负相关,考查了一组数据的完全相关性,是基础的概念题.12、C【解题分析】
利用全称命题的否定是特称命题写出结果即可.【题目详解】解:因为全称命题的否定是特称命题,所以,命题:“,”的否定为,故选:C.【题目点拨】本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】为纯虚数,则14、【解题分析】
由题意可知是偶函数,根据对称性问题转化为直线与曲线有两个交点.【题目详解】因为是偶函数,根据对称性,在上有两个不同的实根,即在上有两个不同的实根,等价转化为直线与曲线有两个交点,而,则当时,,当时,,所以函数在上是减函数,在上是增函数,于是,故故答案为:【题目点拨】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.15、1【解题分析】
由题得,令x=0即得解.【题目详解】由题得,令x=0得,所以.故答案为1【题目点拨】本题主要考查对函数求导,意在考查学生对这些知识的理解掌握水平和分析推理能力.16、39【解题分析】
根据约束条件画出可行域,将问题转化为求解在轴截距的最大值和最小值,由图象可知过时,最小;过时,最大,求出坐标,代入可得结果.【题目详解】由约束条件可得可行域如下图阴影部分所示:令,则求的最大值和最小值即为求在轴截距的最大值和最小值由平移可知,当过时,最小;过时,最大由得:;由得:,本题正确结果:;【题目点拨】本题考查线性规划中的最值问题的求解,关键是能够将问题转化为直线在轴截距的最值问题的求解,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2).【解题分析】试题分析:(1)延长交于点,由重心性质及中位线性质可得,再结合圆的性质得,由已知,可证平面,进一步可得平面平面(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,写出各点坐标,利用二面角与二个半平面的法向量的夹角间的关系可求二面角的余弦值.试题解析:(1)如图,延长交于点.因为为的重心,所以为的中点.因为为的中点,所以.因为是圆的直径,所以,所以.因为平面,平面,所以.又平面,平面=,所以平面.即平面,又平面,所以平面平面.(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,则,,,,,,则,.平面即为平面,设平面的一个法向量为,则令,得.过点作于点,由平面,易得,又,所以平面,即为平面的一个法向量.在中,由,得,则,.所以,.所以.设二面角的大小为,则.点睛:若分别二面角的两个半平面的法向量,则二面角的大小满足,二面角的平面角的大小是的夹角(或其补角,需根据观察得出结论).在利用向量求空间角时,建立合理的空间直角坐标系,正确写出各点坐标,求出平面的法向量是解题的关键.18、(I)an=2n-1,Sn【解题分析】
(Ⅰ)设等差数列an的公差为d,根据题中条件列方程组求出a1和d的值,于此可得出an(Ⅱ)将bn的通项表示为bn=141n【题目详解】(Ⅰ)由题意,得a1=1a2=a1所以an=a(Ⅱ)因为bn所以Tn【题目点拨】本题考查等差数列通项和求和公式,考查裂项求和法,在求解等差数列的问题时,一般都是通过建立首项与公差的方程组,求解这两个基本量来解决等差数列的相关问题,考查计算能力,属于中等题。19、(I);(II).【解题分析】
(1)根据,利用分类讨论便可得到最后解集;(2)根据方程在区间有解转化为函数和函数图象在区间上有交点,从而得解.【题目详解】(1)可化为10或或;2<x≤或或;不等式的解集为;(2)由题意:故方程在区间有解函数和函数图象在区间上有交点当时,【题目点拨】本题考查绝对知不等式的求解和应用,主要是利用分类讨论的方法去掉绝对值符号;关于方程解的问题直接用方程思想和数形结合转化为函数图像交点问题便可得解.20、(1)(2)有理项是展开式的第1,3,5,7项,详见解析【解题分析】
根据二项式展开式的通项公式中的二项式系数求出,再由通项求出有理项.【题目详解】解:(1)由题设知,解得.(2)∵,∴展开式通项,∵且,∴只有时,为有理项,∴有理项是展开式的第1,3,5,7项.【题目点拨】本题考查二项式的展开式的特定项系数和特定项,属于中档题.21、(Ⅰ)答案见解析;(Ⅱ);(Ⅲ).【解题分析】试题分析:(I)求得f’(x)=[-x2+2(a-1)x+2a]ex,取得-x2+2(a-1)x+2a=0的根,即可得到数列的单调性,进而求解函数的最大值.(II)由(I)知,要使得在[-1,1]上单调函数,则:,即可求解a的取值范围;(III)由,分类参数得,构造新函数(x≥1),利用导数求得函数h(x)的单调性和最值,即得到a的取值范围.试题解析:(I)∵,,∴,由得,则,∴在和上单调递减,在上单调递增,又时,且在上单调递增,∴,∴有最大值,当时取最大值.(II)由(I)知:,或,或;(III)当x≥1时f(x)≤g(x),即(-x2+2ax)ex,,令,则,∴h(x)在上单调递增,∴x≥1时h(x)≥h(1)=1,,又a≥0所以a的取值范围是.点睛:本题主要考查导数在函数中的应用,不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024离婚协议要点及范本
- 2024石材矿山荒料资源整合与开发合同3篇
- 2025年度鸭苗繁育基地建设与运营管理合同3篇
- 2025年度船舶船员体检与健康保险合同3篇
- 二零二五年搬家物流运输合同样本6篇
- 2024版建设工程施工合同ef0203
- 二零二五年度房地产项目土地置换合同3篇
- 2025年草原生态保护与草原旅游开发一体化合同3篇
- 2024版深圳股权转让合同协议书范本
- 2025年度高空楼顶广告设计与施工一体化服务合同4篇
- 深圳2024-2025学年度四年级第一学期期末数学试题
- 中考语文复习说话要得体
- 《工商业储能柜技术规范》
- 华中师范大学教育技术学硕士研究生培养方案
- 医院医学伦理委员会章程
- xx单位政务云商用密码应用方案V2.0
- 风浪流耦合作用下锚泊式海上试验平台的水动力特性试验
- 高考英语语法专练定语从句含答案
- 有机农业种植技术操作手册
- 【教案】Unit+5+Fun+Clubs+大单元整体教学设计人教版(2024)七年级英语上册
- 2020年的中国海外工程示范营地申报材料及评分标准
评论
0/150
提交评论