版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京通州区高二数学第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在R上的偶函数(其中e为自然对数的底数),记,,,则a,b,c的大小关系是()A. B. C. D.2.在一个袋子中装有个除颜色外其他均相同的小球,其中有红球个、白球个、黄球个,从袋中随机摸出一个球,记下颜色后放回,连续摸次,则记下的颜色中有红有黄但没有白的概率为()A. B. C. D.3.下列命题中,正确的命题是()A.若,则B.若,则不成立C.,则或D.,则且4.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种 B.180种 C.300种 D.345种5.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为()A.112种 B.100种 C.90种 D.80种6.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.7.用反证法证明:“实数中至少有一个不大于0”时,反设正确的是()A.中有一个大于0 B.都不大于0C.都大于0 D.中有一个不大于08.设实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于()A.0 B. C. D.19.已知数列的前n项和为,满足,,若,则m的最小值为()A.6 B.7 C.8 D.910.执行如图程序框图,若输入的,分别为12,20,则输出的()A.2 B.3 C.4 D.511.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A.512 B.12 C.712.不等式无实数解,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左、右焦点分别为,,过作圆的切线,交双曲线右支于点,若,则双曲线的渐近线方程为__________.14.设地球O的半径为R,P和Q是地球上两地,P在北纬45°,东经20°,Q在北纬,东经110°,则P与Q两地的球面距离为__________。15.如图,矩形中曲线的方程分别为,,在矩形内随机取一点,则此点取自阴影部分的概率为____.16.己知复数和均是纯虚数,则的模为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若对恒成立,求的取值范围.18.(12分)已知函数,若函数有两个零点,.(1)求的取值范围;(2)证明:19.(12分)环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数PM2.5浓度,制定了空气质量标准:空气污染指数(0,50](50,100](100,150](150,200](200,300](300,+∞)空气质量等级优良轻度污染中度污染重度污染严重污染某市政府为了打造美丽城市,节能减排,从2010年开始考察了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.(1)求频率分布直方图中m的值;(2)若按分层抽样的方法,从空气质量等级为良与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量是中度污染的概率;(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:空气质量优良轻度污染中度污染重度污染严重污染天数112711731根据限行前6年180天与限行后60天的数据,计算并填写2×2列联表,并回答是否有90%的把握认为空气质量的优良与汽车尾气的排放有关.空气质量优、良空气质量污染总计限行前限行后总计参考数据:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828参考公式:,其中.20.(12分)已知函数.(1)当时,求函数的单调区间;(2)函数在上是减函数,求实数a的取值范围.21.(12分)在直角坐标系中,圆的方程为.(Ⅰ)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;(Ⅱ)直线的参数方程是(为参数),与交于两点,,求的斜率.22.(10分)已知函数.(1)当时,求函数的值域;(2)如果对任意的,不等式恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
先根据函数奇偶性,求出,得到,再由指数函数单调性,以及余弦函数单调性,得到在上单调递增,进而可得出结果.【题目详解】因为是定义在R上的偶函数,所以,即,即,所以,解得:,所以,当时,,因为是单调递增函数,在上单调递减,所以在上单调递增,又,所以,即.故选:A.【题目点拨】本题主要考查由函数单调比较大小,由函数奇偶性求参数,熟记函数单调性与奇偶性即可,属于常考题型.2、C【解题分析】分析:由已知得取出的3球中有2红1黄或2黄1红,2红1黄的情况有3种,2黄1红的情况也有3种,由此能求出记下的颜色中有红有黄但没有白的概率.详解:从袋中随机摸出一个球,摸到红球、白球、黄球的概率分别为,由已知得取出的3球中有2红1黄或2黄1红,2红1黄的情况有3种,2黄1红的情况也有3种,下的颜色中有红有黄但没有白的概率为.故选:C.点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率计算公式的合理运用.3、C【解题分析】
A.根据复数虚部相同,实部不同时,举例可判断结论是否正确;B.根据实数的共轭复数还是其本身判断是否成立;C.根据复数乘法的运算法则可知是否正确;D.考虑特殊情况:,由此判断是否正确.【题目详解】A.当时,,此时无法比较大小,故错误;B.当时,,所以,所以此时成立,故错误;C.根据复数乘法的运算法则可知:或,故正确;D.当时,,此时且,故错误.故选:C.【题目点拨】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若,则有.4、D【解题分析】试题分析:分两类(1)甲组中选出一名女生有种选法;(2)乙组中选出一名女生有种选法.故共有345种选法考点:排列组合5、A【解题分析】分析:根据分层抽样的总体个数和样本容量,做出女生和男生各应抽取的人数,得到女生要抽取2人,男生要抽取1人,根据分步计数原理得到需要抽取的方法数.详解:∵8名女生,4名男生中选出3名学生组成课外小组,∴每个个体被抽到的概率是,根据分层抽样要求,应选出8×=2名女生,4×=1名男生,∴有C82•C41=1.故答案为:A.点睛:本题主要考查分层抽样和计数原理,意在考查学生对这些知识的掌握水平.6、A【解题分析】
利用,求出,再利用,求出即可【题目详解】,,,则有,代入得,则有,,,又,故答案选A【题目点拨】本题考查三角函数的图像问题,依次求出和即可,属于简单题7、C【解题分析】
根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而要证明题的否定为:“都大于0”,从而得出结论.【题目详解】解:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题:“实数中至少有一个不大于0”的否定为“都大于0”,故选:.【题目点拨】本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.8、B【解题分析】∵三个数,,的和为1,其平均数为∴三个数中至少有一个大于或等于假设,,都小于,则∴,,中至少有一个数不小于故选B.9、C【解题分析】
根据an=sn﹣sn﹣1可以求出{an}的通项公式,再利用裂项相消法求出sm,最后根据已知,解出m即可.【题目详解】由已知可得,,,,(n≥2),1,即,解之得,或7.5,故选:C.【题目点拨】本题考查前n项和求通项公式以及裂项相消法求和,考查了分式不等式的解法,属于中等难度.10、C【解题分析】
由循环结构的特点,先判断,再执行,分别计算当前的值,即可得出结论.【题目详解】解:由,则.
由,则.
由,则.
由,则输出.
故选:C.【题目点拨】本题考查了算法和程序框图的应用问题,也考查了古代数学文化的应用问题,是基础题.11、C【解题分析】试题分析:由题意可知,事件A与事件B是相互独立的,而事件A、B中至少有一件发生的事件包含AB、AB、AB,又P(A)=12,考点:相互独立事件概率的计算.12、C【解题分析】
利用绝对值不等式的性质,因此得出的范围,再根据无实数解得出的范围。【题目详解】解:由绝对值不等式的性质可得,,即.因为无实数解所以,故选C。【题目点拨】本题考查了绝对值不等式的性质,利用绝对值不等式的性质解出变量的范围是解决问题的关键。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先计算,在中,根据勾股定理得得到渐近线方程.【题目详解】如图所示:切点为,连接,过作于是中点,在中,根据勾股定理得:渐近线方程为:故答案为【题目点拨】本题考查了双曲线的渐近线,作辅助线是解题的关键,也可以直接利用正弦定理和余弦定理计算得到答案.14、【解题分析】
首先计算出纬圈半径,再根据经度差可求得长;根据长度关系可求得球心角,进而可求得球面距离.【题目详解】由题意可知:纬圈半径为:两点的经度差为即:两地的球面距离:本题正确结果:【题目点拨】本题考查球面距离及其计算,考查空间想象能力,属于基础题.15、【解题分析】
运用定积分可以求出阴影部分的面积,再利用几何概型公式求出在矩形内随机取一点,则此点取自阴影部分的概率.【题目详解】解:阴影部分的面积为,故所求概率为【题目点拨】本题考查了几何概型,正确运用定积分求阴影部分的面积是解题的关键.16、1【解题分析】
通过纯虚数的概念,即可求得,从而得到模长.【题目详解】根据题意设,则,又为虚数,则,故,则,故答案为1.【题目点拨】本题主要考查纯虚数及模的概念,难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】试题分析:(1)由已知,根据解析式中绝对值的零点(即绝对值等于零时的值),将函数的定义域分成若干段,从而去掉绝对值号,再分别计算各段函数的相应不等式的解集,从而求出原不等式的解集;(2)由题意,将不等式转化为,可构造新函数,则问题再转化为,由(1)可得,即,从而问题可得解.试题解析:(1)因为,所以当时,由得;当时,由得;当时,由得.综上,的解集为.(2)(方法一)由得,因为,当且仅当取等号,所以当时,取得最小值5,所以当时,取得最小值5,故,即的取值范围为.(方法二)设,则,当时,取得最小值5,所以当时,取得最小值5,故,即的取值范围为.18、(1)(2)见证明【解题分析】
(1)确定函数定义域,求导,讨论的范围确定函数的单调区间,最后得到的范围.(2)将,两个零点代入函数,通过化简得到:需证.转化为不等式,设函数求导根据单调性求最值得到证明.【题目详解】解;(1)函数的定义域为,当时,恒成立,则在递减,至多一零点当时,解得,解得,所以在递减.在递增函数要有两个零点,则最小值,解得经检验,即,则在有一个零点.又,,令,,则恒成立.所以在单调递增,即所以,即,则在必有一零点.所以时,函数有两个零点,(2)因为,为的两个零点,所以即,不妨碍,则即要证,只需证,只需证,只需证,只需证,只需证,令,则,现在只需证设,则,所以在单调递增,即所以【题目点拨】本题考查了函数的零点问题,证明不等式,技巧强,综合性大,意在考查学生综合应用能力.19、(1)0.003;(2);(3)有.【解题分析】
(1)因为限行分单双号,王先生的车被限行的概率为0.05,再利用概率和为1解得答案.(2)利用分层抽样得到空气质量良的天气被抽取的有4天,空气中度污染的天气被抽取的有2天,利用排列组合公式的到没有中度污染的概率,用1减得到答案.(3)补全列联表,计算,跟临界值表作比较得到答案.【题目详解】(1)因为限行分单双号,王先生的车被限行的概率为0.05,所以空气重度污染和严重污染的概率应为0.05×2=0.1,由频率分布直方图可知(0.004+0.006+0.005+m)×50+0.1=1,解得m=0.003.(2)因为空气质量良好与中度污染的天气的概率之比为0.3∶0.15=2∶1,按分层抽样的方法从中抽取6天,则空气质量良的天气被抽取的有4天,空气中度污染的天气被抽取的有2天.记事件A为“至少有一天空气质量是中度污染”.则(3)2×2列联表如下:空气质量优、良空气质量污染总计限行前9090180限行后382260总计128112240由表中数据可得,,所以有90%的把握认为空气质量的优良与汽车尾气的排放有关.【题目点拨】本题考查了概率的计算,分层抽样,列联表,意在考查学生的综合应用能力和计算能力.20、(1)减区间为(0,),(1,+∞),增区间为(,1);(2)【解题分析】分析:(1)求导得,得到减区间为(0,),(1,+∞),增区间为(,1);(2),在x∈(2,4)上恒成立,等价于上恒成立,即可求出实数a的取值范围详解:(1)函数的定义域为(0,+∞),在区间(0,),(1,+∞)上f′(x)<0.函数为减函数;在区间(,1)上f′(x)>0.函数为增函数.(2)函数在(2,4)上是减函数,则,在x∈(2,4)上恒成立.实数a的取值范围点睛:本题考查导数的综合应用.导数的基本应用就是判断函数的单调性,,单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024离婚协议要点及范本
- 2024石材矿山荒料资源整合与开发合同3篇
- 2025年度鸭苗繁育基地建设与运营管理合同3篇
- 2025年度船舶船员体检与健康保险合同3篇
- 二零二五年搬家物流运输合同样本6篇
- 2024版建设工程施工合同ef0203
- 二零二五年度房地产项目土地置换合同3篇
- 2025年草原生态保护与草原旅游开发一体化合同3篇
- 2024版深圳股权转让合同协议书范本
- 2025年度高空楼顶广告设计与施工一体化服务合同4篇
- 深圳2024-2025学年度四年级第一学期期末数学试题
- 中考语文复习说话要得体
- 《工商业储能柜技术规范》
- 华中师范大学教育技术学硕士研究生培养方案
- 医院医学伦理委员会章程
- xx单位政务云商用密码应用方案V2.0
- 风浪流耦合作用下锚泊式海上试验平台的水动力特性试验
- 高考英语语法专练定语从句含答案
- 有机农业种植技术操作手册
- 【教案】Unit+5+Fun+Clubs+大单元整体教学设计人教版(2024)七年级英语上册
- 2020年的中国海外工程示范营地申报材料及评分标准
评论
0/150
提交评论