版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省大庆大庆十中、二中、二十三中、二十八中数学高二下期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144 C.576 D.3242.已知函数在其定义域内有两个零点,则实数的取值范围是()A. B. C. D.3.在中,,若,则A. B. C. D.4.通过随机询问111名性别不同的中学生是否爱好运动,得到如下的列联表:男女总计爱好412131不爱好212151总计3151111由得,1.1511.1111.1112.8413.32511.828参照附表,得到的正确结论是()A.在犯错误的概率不超过1.111的前提下,认为“爱好运动与性别有关”B.在犯错误的概率不超过1.11的前提下,认为“爱好运动与性别有关”C.在犯错误的概率不超过1.111的前提下,认为“爱好运动与性别无关”D.有以上的把握认为“爱好运动与性别无关”5.若一个直三棱柱的所有棱长都为1,且其顶点都在一个球面上,则该球的表面积为().A. B. C. D.6.某快递公司共有人,从周一到周日的七天中,每天安排一人送货,每人至少送货天,其不同的排法共有()种.A. B. C. D.7.已知向量,满足,,则向量在向量方向上的投影为()A.0 B.1C.2 D.8.已知的展开式中没有项,,则的值可以是()A.5 B.6 C.7 D.89.将函数的图象向右平移个单位长度得到图象,则函数的解析式是()A. B.C. D.10.如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=12A.66 B.33 C.611.已知集合,集合,则集合的子集个数为()A.1 B.2 C.3 D.412.从,,中任取个不同的数字,从,,中任取个不同的数字,可以组成没有重复数字的四位偶数的个数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知球的半径为1,、是球面上的两点,且,若点是球面上任意一点,则的取值范围是__________.14.乒乓球比赛,三局二胜制.任一局甲胜的概率是,甲赢得比赛的概率是,则的最大值为_____.15.某棱锥的三视图如图所示(单位:),体积为______.16.在区间上随机取一个数,若使直线与圆有交点的概率为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的b,a的值(b,a精确到0.01)相比于(Ⅰ)中(参考公式和计算结果:b=(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.18.(12分)在中,角所对的边分别是,已知.(1)求;(2)若,且,求的面积.19.(12分)在《九章算术》中,将有三条棱相互平行且有一个面为梯形的五面体称为“羡除”.如图所示的五面体是一个羡除,其中棱AB,CD,EF相互平行,四边形ABEF是梯形.已知CD=EF,AD⊥平面ABEF,BE⊥AF.(1)求证:DF∥平面BCE;(2)求证:平面ADF⊥平面BCE.20.(12分)在直角坐标系中,斜率为k的动直线l过点,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)若直线l与曲线C有两个交点,求这两个交点的中点P的轨迹关于参数k的参数方程;(2)在条件(1)下,求曲线的长度.21.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线交于两点.(1)求直线的普通方程和曲线的直角坐标方程;(2)已知点的极坐标为,的值.22.(10分)已知椭圆C:的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线相切.1求椭圆C的标准方程;2设过椭圆右焦点且不重合于x轴的动直线与椭圆C相交于A、B两点,探究在x轴上是否存在定点E,使得为定值?若存在,试求出定值和点E的坐标;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
先求出6人站成一排,有多少种排法,再计算把甲、乙、丙3个人捆绑在一起,再跟剩下的3人排列,有多少种排法,这样就可以用减法求出甲、乙、丙3个人不能都站在一起的排法种数.【题目详解】求出6人站成一排,有种排法,把甲、乙、丙3个人捆绑在一起,再跟剩下的3人排列,有种排法,因此甲、乙、丙3个人不能都站在一起的排法种数为,故本题选C.【题目点拨】本题考查了全排列、捆绑法,考查了数学运算能力.2、A【解题分析】分析:由题意可得即有两个不等的实数解.令,求出导数和单调区间、极值和最值,画出图象,通过图象即可得到结论.详解:函数在其定义域内有两个零点,
等价为即有两个不等的实数解.令,,
当时,递减;当时,递增.在处取得极大值,且为最大值.当.
画出函数的图象,
由图象可得时,和有两个交点,
即方程有两个不等实数解,有两个零点.
故选A.点睛:本题考查函数的零点问题,注意运用转化思想,考查构造函数法,运用导数判断单调性,考查数形结合的思想方法,属于中档题.3、A【解题分析】
根据平面向量的线性运算法则,用、表示出即可.【题目详解】即:本题正确选项:【题目点拨】本题考查平面向量的加法、减法和数乘运算,属于基础题.4、B【解题分析】
试题分析:根据列联表数据得到7.8,发现它大于3.325,得到有99%以上的把握认为“爱好这项运动与性别有关”,从而可得结论.解:∵7.8>3.325,∴有1.11=1%的机会错误,即有99%以上的把握认为“爱好这项运动与性别有关”故选B.点评:本题考查独立性检验的应用,考查利用临界值,进行判断,是一个基础题5、B【解题分析】
根据题意画出其立体图形.设此直三棱柱两底面的中心分别为,则球心为线段的中点,利用勾股定理求出球的半径,即可求得该球的表面积.【题目详解】画出其立体图形:直三棱柱的所有棱长都为1,且每个顶点都在球的球面上,设此直三棱柱两底面的中心分别为,则球心为线段的中点,设球的半径为,在中是其外接圆半径,由正弦定理可得:,,即在中∴球的表面积.故选:B.【题目点拨】本题主要考查空间几何体中位置关系、球和正棱柱的性质.解决本题的关键在于能想象出空间图形,并能准确的判断其外接球的球心就是上下底面中心连线的中点.6、C【解题分析】分析:把天分成天组,然后人各选一组值班即可.详解:天分成天,天,天组,人各选一组值班,共有种,故选C.点睛:本题主要考查分组与分配问题问题,着重考查分步乘法计数原理,意在考查综合运用所学知识解决实际问题的能力,属于中档题.7、D【解题分析】试题分析:在方向上的投影为,故选D.考点:向量的投影.8、C【解题分析】
将条件转化为的展开式中不含常数项,不含项,不含项,然后写出的展开式的通项,即可分析出答案.【题目详解】因为的展开式中没有项,所以的展开式中不含常数项,不含项,不含项的展开式的通项为:所以当取时,方程无解检验可得故选:C【题目点拨】本题考查的是二项式定理的知识,在解决二项式展开式的指定项有关的问题的时候,一般先写出展开式的通项.9、C【解题分析】
由题意利用三角函数的图象变换原则,即可得出结论.【题目详解】由题意,将函数的图象向右平移个单位长度,可得.故选C.【题目点拨】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.10、C【解题分析】如图,以A为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a,a,0),F(a,0,0),AG=(a,a,0),AC=(0,2a,2a),BG=(a,-a,0),BC=(0,0,2a),设平面AGC的法向量为n1=(x1,y1,1),由AG⋅n1=0AC⋅nsinθ=BG⋅n1|BG11、D【解题分析】
因为直线与抛物线有两个交点,可知集合的交集有2个元素,可知其子集共有个.【题目详解】由题意得,直线与抛物线有2个交点,故的子集有4个.【题目点拨】本题主要考查了集合的交集运算,子集的概念,属于中档题.12、A【解题分析】
根据选取的两个偶数是否包含0分为两种情况,种数相加得到答案.【题目详解】选取的两个偶数不包含0时:选取的两个偶数包含0时:故共有96个偶数答案选A【题目点拨】本题考查了排列组合,将情况分类可以简化计算.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:以球心为坐标原点建立空间直角坐标系,设点的坐标,用来表示,进而求出答案.详解:由题可知,则,以球心为坐标原点,以为轴正方向,平面的垂线为轴建立空间坐标系,则,,设,在球面上,则设,当直线与圆相切时,取得最值.由得故答案为点睛:本题考查了空间向量数量积的运算,使用坐标法可以简化计算,动点问题中变量的取值范围是解此类问题的关键.14、【解题分析】分析:采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率;进而求得的最大值.详解:采用三局两胜制,
则甲在下列两种情况下获胜:(甲净胜二局),(前二局甲一胜一负,第三局甲胜).因为与互斥,所以甲胜概率为则设即答案为.,注意到,则函数在和单调递减,在上单调递增,故函数在处取得极大值,也是最大值,最大值为即答案为.点睛:本题考查概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用.15、【解题分析】
通过三视图可知:该几何体是底面为边长为2正方形,高为2的四棱锥,利用棱锥的体积公式可以求出该棱锥的体积.【题目详解】通过三视图可知:该几何体是底面为边长为2正方形,高为2的四棱锥,所以该棱锥的体积为:.故答案为:【题目点拨】本题考查了通过三视图还原空间几何体,考查了棱锥的体积公式,考查了数学运算能力.16、【解题分析】
分析:先根据直线与圆相交的关系得出不等式得b的取值范围,然后由概率为建立等式求解即可.详解:圆心到直线的距离:故答案为:点睛:考查直线与圆的位置关系,然后再结合几何概型求解即可.属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)17.5,;(3);(3)35.【解题分析】试题分析:(1)因为回归直线必过样本中心点,求得;(2)利用公式求得,再和现有数据进行比较;(3)是古典概型,由题意列出从这口井中随机选取口井的可能情况,求出概率.试题解析:因为,,回归只需必过样本中心点,则,故回归只需方程为,当时,,即的预报值为.………………4分因为,,所以.,即,.,,均不超过,因此使用位置最接近的已有旧井;………………8分易知原有的出油量不低于的井中,这口井是优质井,这口井为非优质井,由题意从这口井中随机选取口井的可能情况有:,,,共种,其中恰有口是优质井的有中,所以所求概率是.………………12分考点:线性回归方程及线性回归分析,古典概型.18、(Ⅰ);(Ⅱ).【解题分析】试题分析:利用正弦定理和余弦定理及三角形面积公式解斜三角形是高考高频考点,利用正弦定理和余弦定理进行边转角或角转边是常用的方法,本题利用正弦定理“边转角”后,得出角C,第二步利用余弦定理求出边a,c,再利用面积公式求出三角形的面积.试题解析:(1)由正弦定理,得,因为,解得,.(2)因为.由余弦定理,得,解得.的面积.【题目点拨】利用正弦定理和余弦定理及三角形面积公式解斜三角形是高考高频考点,利用正弦定理和余弦定理进行边转角或角转边是常用的方法,已知两边及其夹角求第三边或已知三边求任意角使用于心定理,已知两角及任意边或已知两边及一边所对的角借三角形用正弦定理,另外含经常利用三角形面积公式以及与三角形的内切圆半径与三角形外接圆半径发生联系,要灵活使用公式.19、(1)证明见解析;(2)证明见解析【解题分析】
(1)证明四边是平行四边形,再用线面平行的判定定理即可证明;(2)利用线面垂直得线线垂直,再利用线面垂直的判定定理和面面垂直的判定定理即可证明.【题目详解】证明:(1)相互平行,四边形是梯形.,∴四边形是平行四边形,,,,∴(2)∵平面,平面,,,,∴平面,∵平面,∴平面平面.【题目点拨】本题主要考查的是线面平行的判定定理、线面垂直的性质定理、线面垂直的判定定理和面面垂直的判定定理的应用,是中档题.20、(1);(2)【解题分析】
(1)把两边同时乘以,然后结合极坐标与直角坐标的互化公式可得曲线的直角坐标方程,设直线的方程为,与曲线联立,利用根与系数的关系可得两个交点的中点的轨迹关于参数的参数方程;(2)化参数方程为普通方程,作出图形,数形结合即可求得曲线的长度.【题目详解】解:(1)曲线C的直角坐标方程为.设直线l的方程为,设直线l与曲线C的交点为,,联立直线l与曲线C的方程得解得,,,,设P的坐标为,则,代入l的方程得.故的参数方程为.(2)由的参数方程得即.如图,圆C:圆心为,半径为2,圆D:圆心为,半径为2,曲线为劣弧,显然,所以的长度为.【题目点拨】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查圆与圆位置关系的应用,考查计算能力,属于中档题.21、(1),.(2).【解题分析】分析:(1)先根据加减消元法得直线的普通方程,再根据将曲线的极坐标方程化为直角坐标方程;(2)先求P直角坐标,再设直线的参数方程标准式,代入曲线的直角坐标方程,根据参数几何意义以及利用韦达定理得结果.详解:(1)的普通方程为:;又,即曲线的直角坐标方程为:(2)解法一:在直线上,直线的参数方程为(为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年冲击钻施工绿色施工评估合同3篇
- 二零二五年度体育健身场所承包经营合同范文4篇
- 二零二四年度学校医务室药品及医疗器械采购合同3篇
- 2025年度个人自建房施工合同工程验收标准合同3篇
- 二零二四年生态农业园区植物养护与生态循环合同3篇
- 二零二四年港口码头使用权及维护保养服务合同3篇
- 二零二四年度幼儿园食堂安全服务合同2篇
- 2025年度拆除项目进度款支付合同范本4篇
- 二零二五年度房地产项目开发与派遣公司销售团队派遣合同4篇
- 2025版农业种植技术服务与科技研发合作合同3篇
- 2025-2030年中国草莓市场竞争格局及发展趋势分析报告
- 第二章《有理数的运算》单元备课教学实录2024-2025学年人教版数学七年级上册
- 华为智慧园区解决方案介绍
- 奕成玻璃基板先进封装中试线项目环评报告表
- 广西壮族自治区房屋建筑和市政基础设施全过程工程咨询服务招标文件范本(2020年版)修订版
- 人教版八年级英语上册期末专项复习-完形填空和阅读理解(含答案)
- 2024新版有限空间作业安全大培训
- GB/T 44304-2024精细陶瓷室温断裂阻力试验方法压痕(IF)法
- 年度董事会工作计划
- 《退休不褪色余热亦生辉》学校退休教师欢送会
- 02R112拱顶油罐图集
评论
0/150
提交评论