2024届山东省莒县第二中学实验班数学高二下期末质量检测试题含解析_第1页
2024届山东省莒县第二中学实验班数学高二下期末质量检测试题含解析_第2页
2024届山东省莒县第二中学实验班数学高二下期末质量检测试题含解析_第3页
2024届山东省莒县第二中学实验班数学高二下期末质量检测试题含解析_第4页
2024届山东省莒县第二中学实验班数学高二下期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省莒县第二中学实验班数学高二下期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在直角坐标系中,若角的终边经过点,则()A. B. C. D.2.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.63.已知数列满足,则()A. B. C. D.4.设函数是定义在上的偶函数,且,若,则A. B. C. D.5.设0<p<1,随机变量X,Y的分布列分别为()X123Pp1-pp-Y123Pp1-p当X的数学期望取得最大值时,Y的数学期望为()A.2 B.3316 C.55276.已知函数,则函数的定义域为()A. B. C. D.7.若函数无极值点,则()A. B. C. D.8.复数的共轭复数为()A. B. C. D.9.在三棱锥P-ABC中,,,,若过AB的平面将三棱锥P-ABC分为体积相等的两部分,则棱PA与平面所成角的正弦值为()A. B. C. D.10.已知,函数,若在上是单调减函数,则的取值范围是()A. B. C. D.11.已知全集U=R,集合A=xxx+2<0,A.-2,1 B.-1,0C.(-2,-1]∪[0,1] D.(0,1)12.如图所示是求的程序流程图,其中①应为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.向量,,在正方形网格(每个小正方形的边长为1)中的位置如图所示,若向量与共线,则________.14.记等差数列的前项和为,若,,则____.15.已知向量满足:,,当取最大值时,______.16.已知,,,是某球面上不共面的四点,且,,,则此球的表面积等于_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)我市物价监督部门为调研某公司新开发上市的一种产品销售价格的合理性,对该公司的产品的销售与价格进行了统计分析,得到如下数据和散点图:定价(元/)102030405060年销售11506434242621658614.112.912.111.110.28.9图(1)为散点图,图(2)为散点图.(Ⅰ)根据散点图判断与,与哪一对具有较强的线性相关性(不必证明);(Ⅱ)根据(Ⅰ)的判断结果和参考数据,建立关于的回归方程(线性回归方程中的斜率和截距均保留两位有效数字);(Ⅲ)定价为多少时,年销售额的预报值最大?(注:年销售额定价年销售)参考数据:,,,,,,,,参考公式:,.18.(12分)如图,在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,极坐标系中,弧所在圆的圆心分别为,曲线是弧,曲线是弧,曲线是弧,曲线是弧.(1)分别写出的极坐标方程;(2)直线的参数方程为(为参数),点的直角坐标为,若直线与曲线有两个不同交点,求实数的取值范围,并求出的取值范围.19.(12分)已知函数,.(1)若不等式对任意的恒成立,求实数的取值范围;(2)记表示中的最小值,若函数在内恰有一个零点,求实的取值范围.20.(12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求AM与平面A1MD所成角的正弦值.21.(12分)面对某种流感病毒,各国医疗科研机构都在研究疫苗,现有A、B、C三个独立的研究机构在一定的时期研制出疫苗的概率分别为SKIPIF1<0.求:(1)他们能研制出疫苗的概率;(2)至多有一个机构研制出疫苗的概率.22.(10分)已知函数.(Ⅰ)求的最小正周期:(Ⅱ)求在区间上的最大值和最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:由题意角的终边经过点,即点,利用三角函数的定义及诱导公式,即可求解结果.详解:由题意,角的终边经过点,即点,则,由三角函数的定义和诱导公式得,故选C.点睛:本题主要考查了三角函数的定义和三角函数诱导公式的应用,其中熟记三角函数的定义和三角函数的诱导公式是解答的关键,着重考查了推理与运算能力.2、B【解题分析】区间[22,31)内的数据共有4个,总的数据共有11个,所以频率为1.4,故选B.3、B【解题分析】分析:首先根据题中所给的递推公式,推出,利用累求和与对数的运算性质即可得出结果详解:由,可得,即,累加得,又,所以,所以有,故选B.点睛:该题考查的是有关利用累加法求通项的问题,在求解的过程中,需要利用题中所给的递推公式,可以转化为相邻两项差的式子,而对于此类式子,就用累加法求通项,之后再将100代入求解.4、D【解题分析】

根据函数的奇偶性求出和的值即可得到结论.【题目详解】是定义在上的偶函数,,,即,则,故选D.【题目点拨】本题主要考查函数值的计算,以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题.5、D【解题分析】

先利用数学期望公式结合二次函数的性质得出EX的最小值,并求出相应的p,最后利用数学期望公式得出EY的值。【题目详解】∵EX=p∴当p=14时,EX取得最大值.此时EY=-2p【题目点拨】本题考查数学期望的计算,考查二次函数的最值,解题的关键就是数学期望公式的应用,考查计算能力,属于中等题。6、B【解题分析】

根据对数的真数大于零,负数不能开偶次方根,分母不能为零求解.【题目详解】因为函数,所以,所以,解得,所以的定义域为.故选:B【题目点拨】本题主要考查函数定义域的求法,还考查了运算求解的能力,属于基础题.7、A【解题分析】

先对函数求导,再利用导函数与极值的关系即得解.【题目详解】由题得,因为函数无极值点,所以,即.故选:A【题目点拨】本题主要考查利用导数研究函数的极值,意在考查学生对该知识的理解掌握水平和分析推理能力.8、B【解题分析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则可知:,则复数的共轭复数为.本题选择B选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.9、A【解题分析】

由题构建图像,由,想到取PC中点构建平面ABD,易证得平面ABD,所以PA与平面所成角即为,利用正弦函数定义,得答案.【题目详解】如图所示,取PC中点为D连接AD,BD,因为过AB的平面将三棱锥P-ABC分为体积相等的两部分,所以即为平面ABD;又因为,所以,又,所以,且,所以平面ABD,所以PA与平面所成角即为,因为,所以,所以.故选:A【题目点拨】本题考查立体几何中求线面角,应优先作图,找到或证明到线面垂直,即可表示线面角,属于较难题.10、C【解题分析】

根据函数的解析式,可求导函数,根据导函数与单调性的关系,可以得到;分离参数,根据所得函数的特征求出的取值范围.【题目详解】因为所以因为在上是单调减函数所以即所以当时,恒成立当时,令,可知双刀函数,在上为增函数,所以即所以选C【题目点拨】导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值)..11、C【解题分析】

先弄清楚阴影部分集合表示的含义,并解出集合A、B,结合新定义求出阴影部分所表示的集合。【题目详解】由题意知,阴影部分区域表示的集合S=x集合A=xxx+2A∪B=-2,1,A∩B=因此,阴影部分区域所表示的集合为S=-2,-1∪0,1【题目点拨】本题考查集合的运算、集合的表示法以及集合中的新定义,考查二次不等式以及对数不等式的解法,解题的关键就是要弄清楚Venn图表示的新集合的意义,在计算无限集之间的运算时,可充分利用数轴来理解,考查逻辑推理能力与运算求解能力,属于中等题。12、C【解题分析】分析:由题意结合流程图的功能确定判断条件即可.详解:由流程图的功能可知当时,判断条件的结果为是,执行循环,当时,判断条件的结果为否,跳出循环,结合选项可知,①应为.本题选择C选项.点睛:本题主要考查流程图的应用,补全流程图的方法等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

建立平面直角坐标系,从而得到的坐标,这样即可得出的坐标,根据与共线,可求出,从而求出的坐标,即得解.【题目详解】建立如图所示平面直角坐标系,则:;与共线故答案为:【题目点拨】本题考查了平面向量线性运算和共线的坐标表示,考查了学生概念理解,数形结合,数学运算的能力,属于中档题.14、2【解题分析】

利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S1.【题目详解】∵等差数列{an}的前n项和为Sn,a3=0,a6+a1=2,∴,解得a1=﹣4,d=2,∴S1=1a1+=﹣28+42=2.故答案为:2.【题目点拨】本题考查等差数列的前1项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15、【解题分析】

根据向量模的性质可知当与反向时,取最大值,根据模长的比例关系可得,整理可求得结果.【题目详解】当且仅当与反向时取等号又整理得:本题正确结果:【题目点拨】本题考查向量模长的运算性质,关键是能够确定模长取得最大值时,两个向量之间的关系,从而得到两个向量之间的关系.16、【解题分析】

把已知三棱锥补形为正方体,可得外接球的半径,则答案可求.【题目详解】解:如图,

把三棱锥A−BCD补形为棱长为的正方体,

可得为球的直径,则球的半径为,

∴球的表面积为.

故答案为:.【题目点拨】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,正确补形是关键,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)答案见解析;(Ⅱ)答案见解析;(Ⅲ)定价为20元/时,年销售额的预报值最大.【解题分析】分析:(Ⅰ)由于图(2)的点更集中在一条直线附近,所以与具有的线性相关性较强.(Ⅱ)利用最小二乘法求关于的回归方程为.(Ⅲ)先得到,,再利用导数求定价为多少时年销售额的预报值最大.详解:(Ⅰ)由散点图知,与具有的线性相关性较强.(Ⅱ)由条件,得,,所以,又,得,故关于的回归方程为.(Ⅲ)设年销售额为元,令,,,令,得;令,得,则在单调递增,在单调递减,在取得最大值,因此,定价为20元/时,年销售额的预报值最大.点睛:(1)本题主要考查两个变量的相关性和最小二乘法求回归直线方程,考查利用导数求函数的最值.(2)本题的难点在第3问,这里要用到导数的知识先求函数的单调区间,再求最大值.18、(1);;;,或(2),【解题分析】

(1)设弧上任意一点根据ABCD是边长为2的正方形,AB所在的圆与原点相切,其半径为1,求得,同理求得其他弧所对应的极坐标方程.(2)把直线的参数方程和的极坐标方程都化为直角坐标方程,利用数形结合求解,把直线的参数方程化为直线的标准参数方程,直角坐标方程联立,再利用参数的几何意义求解.【题目详解】(1)如图所示:设弧上任意一点因为ABCD是边长为2的正方形,AB所在的圆与原点相切,其半径为1,所以所以的极坐标方程为;同理可得:的极坐标方程为;的极坐标方程为;的极坐标方程为,或(2)因为直线的参数方程为所以消去t得,过定点,直角坐标方程为如图所示:因为直线与曲线有两个不同交点,所以因为直线的标准参数方程为,代入直角坐标方程得令所以所以所以的取值范围是【题目点拨】本题主要考查极坐标方程的求法和直线与曲线的交点以及直线参数的几何意义的应用,还考查了数形结合思想和运算求解的能力,属于难题.19、(1);(2)【解题分析】

(1)利用分离参数,并构造新的函数,利用导数判断的单调性,并求最值,可得结果.(2)利用对的分类讨论,可得,然后判断函数单调性以及根据零点存在性定理,可得结果.【题目详解】(1)由,得,令,当时,,,;当时,,,,∴函数在上递减,在上递增,,,∴实数的取值范围是(2)①由(1)得当时,,,,函数在内恰有一个零点,符合题意②当时,i.若,,,故函数在内无零点ii.若,,,,不是函数的零点;iii.若时,,故只考虑函数在的零点,,若时,,∴函数在上单调递增,,,∴函数在上恰有一个零点若时,,∴函数在上单调递减,,∴函数在上无零点,若时,,,∴函数在上递减,在上递增,要使在上恰有一个零点,只需,.综上所述,实数的取值范围是.【题目点拨】本题考查函数导数的综合应用,难点在于对参数的分类讨论,考验理解能力以及对问题的分析能力,属难题.20、(1)见解析(2)【解题分析】

要证线面平行,先证线线平行建系,利用法向量求解。【题目详解】(1)连接ME,BC∵M,E分别为B1B,BC的中点∴又∵∴A1DCB1是平行四边形∴∴∴NDEM是平行四边形∴NM∥DE又NM平面C1DE∴NM∥平面C1DE(2)由题意得DE与BC垂直,所以DE与AD垂直:以D为原点,DA,DE,DD1三边分别为x,y,z轴,建立空间坐标系O-xyz则A(2,0,0),A1(2,0,4),M(1,,2)设平面A1MD的法向量为则∴解得又∴∴AM与平面A1MD所成角的正弦值.【题目点拨】要证线面平行,可证线线平行或面面平行。求线面所成角得正弦值,可用几何法做出线面角,再求正弦值;或者建立空间直角坐标系,利用法向量求解。21、(1)(2)【解题分析】试题分析:记A、B、C分别表示他们研制成功这

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论