版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长郡中学、雅礼中学等四校2024届数学高二下期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,函数的图象在点P处的切线方程是,则()A. B.1 C.2 D.02.现有4种不同品牌的小车各2辆(同一品牌的小车完全相同),计划将其放在4个车库中(每个车库放2辆则恰有2个车库放的是同一品牌的小车的不同放法共有()A.144种 B.108种 C.72种 D.36种3.已知直线(t为参数)上两点对应的参数值分别是,则()A. B.C. D.4.已知等差数列中,,,则()A. B. C. D.5.下列三个数:,,,大小顺序正确的是()A. B. C. D.6.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A. B.C. D.7.已知集合,则()A. B. C. D.8.平面向量,,(),且与的夹角等于与的夹角,则()A. B. C. D.9.已知函数与的图象上存在关于轴对称的点,则的取值范围是()A. B. C. D.10.某产品的广告费用万元与销售额万元的统计数据如下表:根据以上数据可得回归直线方程,其中,据此模型预报广告费用为6万元时,销售额为65.5万元,则,的值为()A., B.,C., D.,11.已知集合,,那么()A. B. C. D.12.正方体中,点在上运动(包括端点),则与所成角的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.底面半径为1,母线长为2的圆锥的体积为______.14.的二项展开式中项的系数为______.15.在区间上随机取一个数,使得成立的概率为.16.将圆的一组等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录个点的颜色,称为该圆的一个“阶色序”,当且仅当两个“阶色序”对应位置上的颜色至少有一个不相同时,称为不同的“阶色序”.若某圆的任意两个“阶色序”均不相同,则称该圆为“阶魅力圆”.“4阶魅力圆”中最多可有的等分点个数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的左焦点,离心率为,点为椭圆上任一点,且的最小值为.(1)求椭圆的方程;(2)若直线过椭圆的左焦点,与椭圆交于两点,且的面积为,求直线的方程.18.(12分)已知椭圆:的左焦点左顶点.(Ⅰ)求椭圆的方程;(Ⅱ)已知,是椭圆上的两点,,是椭圆上位于直线两侧的动点.若,试问直线的斜率是否为定值?请说明理由.19.(12分)甲、乙两人进行象棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)用X表示比赛决出胜负时的总局数,求随机变量X的分布列和均值.20.(12分)已知,且.(1)求证:;(2)当时,不等式恒成立,求的取值范围.21.(12分)已知函数.(1)若函数在处的切线方程为,求的值;(2)若函数无零点,求的取值范围.22.(10分)各项均为正数的数列的首项,前项和为,且.(1)求的通项公式:(2)若数列满足,求的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:由切线方程确定切点坐标,然后结合导数的几何意义整理计算即可求得最终结果.详解:由切线方程可知,当时,,切点坐标为,即,函数在处切线的斜率为,即,据此可知:.本题选择B选项.点睛:本题主要考查切线的几何意义及其应用,意在考查学生的转化能力和计算求解能力.2、C【解题分析】
根据题意,分3步进行分析:①、在4种不同品牌的小车任取2个品牌的小车,②、将取出的2个品牌的小车任意的放进2个车库中,③、剩余的4辆车放进剩下的2个车库,相同品牌的不能放进同一个车库,分别分析每一步的情况数目,由分步计数原理计算可得答案.【题目详解】解:根据题意,分3步进行分析:①、在4种不同品牌的小车任取2个品牌的小车,有C42种取法,②、将取出的2个品牌的小车任意的放进2个车库中,有A42种情况,③、剩余的4辆车放进剩下的2个车库,相同品牌的不能放进同一个车库,有1种情况,则恰有2个车库放的是同一品牌的小车的不同放法共有C42A42×1=72种,故选:C.点睛:能用分步乘法计数原理解决的问题具有以下特点:(1)完成一件事需要经过n个步骤,缺一不可.(2)完成每一步有若干种方法.(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.3、C【解题分析】试题分析:依题意,,由直线参数方程几何意义得,选C.考点:直线参数方程几何意义4、C【解题分析】分析:根据等差数列的通项公式,可求得首项和公差,然后可求出值。详解:数列为等差数列,,,所以由等差数列通项公式得,解方程组得所以所以选C点睛:本题考查了等差数列的概念和通项公式的应用,属于简单题。5、A【解题分析】
将与化成相同的真数,然后利用换底公式与对数函数的单调性比较的大小,然后再利用中间量比较的大小,从而得出三者的大小.【题目详解】解:因为,且,所以,因为,所以.故选A.【题目点拨】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.6、D【解题分析】分析:根据题意,设,对求导,利用导数与函数单调性的关系分析可得在上为减函数,分析的特殊值,结合函数的单调性分析可得在区间和上都有,结合函数的奇偶性可得在区间和上都有,进而将不等式变形转化可得或,解可得x的取值范围,即可得答案.详解:根据题意,设,其导数,又当时,,则有,即函数在上为减函数,又,则在区间上,,又由,则,在区间上,,又由,则,则在区间和上都有,又由为奇函数,则在区间和上都有,或,解可得:或.则x的取值范围是.故选:D.点睛:本题考查函数的导数与函数的单调性的关系,以及不等式的解法,关键是分析与的解集.7、C【解题分析】
利用对数函数的单调性对集合化简得x|0<x<1},然后求出A∩B即可.【题目详解】={x|0<x<2},∴A∩B={1},故选:C【题目点拨】考查对数不等式的解法,以及集合的交集及其运算.8、D【解题分析】
,,,与的夹角等于与的夹角,,,解得,故选D.【考点定位】向量的夹角及向量的坐标运算.9、C【解题分析】
函数关于轴对称的解析式为,则它与在有交点,在同一坐标系中分别画出两个函数的图象,观察图象得到.【题目详解】函数关于轴对称的解析式为,函数,两个函数的图象如图所示:若过点时,得,但此时两函数图象的交点在轴上,所以要保证在轴的正半轴,两函数图象有交点,则的图象向右平移均存在交点,所以,故选C.【题目点拨】本题综合考查函数的性质及图象的平移问题,注意利用数形结合思想进行问题求解,能减少运算量.10、C【解题分析】分析:根据回归直线过样本中心和条件中给出的预测值得到关于,的方程组,解方程组可得所求.详解:由题意得,又回归方程为,由题意得,解得.故选C.点睛:线性回归方程过样本中心是一个重要的结论,利用此结论可求回归方程中的参数,也可求样本数据中的参数.根据回归方程进行预测时,得到的数值只是一个估计值,解题时要注意这一点.11、C【解题分析】
解出集合B,即可求得两个集合的交集.【题目详解】由题:,所以.故选:C【题目点拨】此题考查求两个集合的交集,关键在于准确求出方程的解集,根据集合交集运算法则求解.12、D【解题分析】以点D为原点,DA、DC、分别为建立空间直角坐标系,设正方体棱长为1,设点P坐标为,则设的夹角为,所以,所以当时,取最大值.当时,取最小值.因为.故选D.【题目点拨】因为,所以求夹角的取值范围.建立坐标系,用空间向量求夹角余弦,再求最大、最小值.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先由勾股定理求圆锥的高,再结合圆锥的体积公式运算即可得解.【题目详解】解:设圆锥的高为,由勾股定理可得,由圆锥的体积可得,故答案为:.【题目点拨】本题考查了圆锥的体积公式,重点考查了勾股定理,属基础题.14、【解题分析】
由二项式定理可得展开式通项公式,令幂指数等于可求得,代入通项公式可确定所求项的系数.【题目详解】展开式通项公式为:令,解得:项的系数为故答案为:【题目点拨】本题考查利用二项式定理求解指定项的系数问题,关键是能够熟练掌握二项展开式通项公式的形式,属于基础题.15、【解题分析】
利用零点分段法解不等式,得出解集与区间取交集,再利用几何概型的概率公式计算出所求事件的概率.【题目详解】当时,,解得,此时;当时,成立,此时;当时,,解得,此时.所以,不等式的解集为,因此,由几何概型的概率公式可知,所求事件的概率为,故答案为.s【题目点拨】本题考查绝对值不等式的解法、几何概型概率公式的计算,解题的关键就是解出绝对值不等式,解绝对值不等式一般有零点分段法(分类讨论法)以及几何法两种方法求解,考查计算能力,属于中等题.16、1【解题分析】分析:由题意可得,“4阶色序”中,每个点的颜色有两种选择,故“4阶色序”共有2×2×2×2=1种,从两个方面进行了论证,即可得到答案.详解:“4阶色序”中,每个点的颜色有两种选择,故“4阶色序”共有2×2×2×2=1种,一方面,n个点可以构成n个“4阶色序”,故“4阶魅力圆”中的等分点的个数不多于1个;另一方面,若n=1,则必需包含全部共1个“4阶色序”,不妨从(红,红,红,红)开始按逆时针方向确定其它各点颜色,显然“红,红,红,红,蓝,蓝,蓝,蓝,红,蓝,蓝,红,红,蓝,红,蓝”符合条件.故“4阶魅力圆”中最多可有1个等分点.故答案为:1.点睛:本题主要考查合情推理的问题,解题的关键分清题目所包含的条件,读懂已知条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解题分析】
(1)设椭圆的标准方程为:1(a>b>0),由离心率为,点P为椭圆C上任意一点,且|PF|的最小值为1,求出a2=2,b2=1,由此能求出椭圆C的方程;(2)设的方程为:,代入得:,由弦长公式与点到线的距离公式分别求得,由面积公式得的方程即可求解【题目详解】(1)设椭圆的标准方程为:1(a>b>0),∵离心率为,∴,∴a,∵点P为椭圆C上任意一点,且|PF|的最小值为1,∴c=1,∴a2=b2+c2=b2+1,解得a2=2,b2=1,∴椭圆C的方程为1.(2)因,与轴不重合,故设的方程为:,代入得:,其恒成立,设,则有,又到的距离,解得,的方程为:或.【题目点拨】本题考查椭圆方程的求法,考查直线方程的求法,考查直线与椭圆的位置关系,准确计算是关键,是中档题,解题时要认真审题,注意椭圆性质的合理运用.18、(Ⅰ);(Ⅱ)答案见解析.【解题分析】分析:(Ⅰ)根据条件依次求得,和,从而可得方程;(Ⅱ)当∠APQ=∠BPQ,则PA、PB的斜率之和为0,设直线PA的斜率为k,则PB的斜率为-k,PA的直线方程为y-3=k(x-2),PB的直线方程为y-9=-k(x-2),由此利用韦达定理结合已知条件能求出AB的斜率为定值.详解:(Ⅰ)由题意可得,,由,得所以椭圆的方程为.(Ⅱ)当时,,的斜率之和为,设直线的斜率为,则直线的斜率为,设,的方程为.联立消得.所以同理所以,.所以.所以的斜率为定值点睛:本题主要考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.19、(1);(2)分布列见解析,.【解题分析】
(1)根据概率的乘法公式,求出对应的概率,即可得到结论.(2)利用离散型随机变量分别求出对应的概率,即可求X的分布列以及数学期望.【题目详解】用A表示“甲在4局以内(含4局)赢得比赛”,表示“第k局甲获胜”,表示“第k局乙获胜”则,,.(1).(2)X的所有可能取值为.,,,.∴X的分布列为X2345P∴【题目点拨】本题考查了相互独立事件、互斥事件的概率计算公式、随机变量的分布列与数学期望,考查了推理能力与计算能力,属于中档题.20、(1)见证明;(2).【解题分析】
(1)由柯西不等式即可证明;(2)可先计算的最小值,再分,,三种情况讨论即可得到答案.【题目详解】解:(1)由柯西不等式得.∴,当且仅当时取等号.∴;(2),要使得不等式恒成立,即可转化为,当时,,可得,当时,,可得,当时,,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 定金合同范本
- 2024年度演艺经纪代理合同2篇
- 二零二四年度云计算服务定制与运维合同
- 二零二四年度电动折叠自行车购销协议3篇
- 短期劳动力雇佣合同04
- 高级定制服装生产与销售合同(04版)
- 二零二四年度社交电商模式创新与合作合同3篇
- 二零二四年度广告媒体投放合作协议
- 二零二四年度地下水监测井建设合同
- 二零二四年度技术转让合同with技术改进与后续支持
- 中考英语一模作文-征集“文化自信类”写作
- 肠内营养并发症预防与处理
- 2024年意识形态工作专题会议记录【6篇】
- 阿迪达斯品牌陈列手册
- 产业园物业管理方案
- 海水养殖与水域污染治理
- 钢筋拉伸试验课件
- 《比特币完整介绍》课件
- 办公室人员颈肩腰腿痛的预防和治疗课件
- 急诊科护士的院内急救团队协作
- 生态环境安全隐患排查
评论
0/150
提交评论