湖南省浏阳一中、株洲二中等湘东七校2024届数学高二第二学期期末综合测试模拟试题含解析_第1页
湖南省浏阳一中、株洲二中等湘东七校2024届数学高二第二学期期末综合测试模拟试题含解析_第2页
湖南省浏阳一中、株洲二中等湘东七校2024届数学高二第二学期期末综合测试模拟试题含解析_第3页
湖南省浏阳一中、株洲二中等湘东七校2024届数学高二第二学期期末综合测试模拟试题含解析_第4页
湖南省浏阳一中、株洲二中等湘东七校2024届数学高二第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省浏阳一中、株洲二中等湘东七校2024届数学高二第二学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角A,B,C所对的边分别是a,b,c,若角A,C,B成等差数列,且,则的形状为()A.直角三角形 B.等腰非等边三角形C.等边三角形 D.钝角三角形2.某个几何体的三视图如图所示(单位:m),则该几何体的表面积(结果保留π)为A. B.C. D.3.已知函数为偶函数,记,,,则的大小关系为()A. B. C. D.4.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?()A.5局3胜制 B.7局4胜制 C.都一样 D.说不清楚5.当输入a的值为,b的值为时,执行如图所示的程序框图,则输出的的结果是()A. B. C. D.6.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.7.已知袋中装有除颜色外完全相同的5个球,其中红球2个,白球3个,现从中任取1球,记下颜色后放回,连续摸取3次,设ξ为取得红球的次数,则PA.425 B.36125 C.98.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有()种.A.36 B.30 C.12 D.69.将两颗骰子各掷一次,设事件A为“两颗骰子向上点数不同”,事件B为“至少有一颗骰上点数为3点”则()A. B. C. D.10.已知三棱锥的每个顶点都在球的球面上,平面,,,,则球的体积为()A. B. C. D.11.已知,∈C.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件12.某单位为了了解用电量(度)与气温()之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温()101318-1用电量(度)38342464由表中数据得回归直线方程中的,预测当气温为时,用电量度数约为()A.64 B.65 C.68 D.70二、填空题:本题共4小题,每小题5分,共20分。13.如图,在正方体中,与所成角的大小为________.14.平面上两组平行线互相垂直,一组由条平行线组成,一组由条平行线组成,则它们能围成的矩形个数是___________15.在的二项展开式中,项的系数为_____(结果用数值表示).16.正方体中,、分别是、的中点,则直线与平面所成角的正弦值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)若不等式的解集包含,求实数的取值范围.18.(12分)如图,在中,,D是AE的中点,C是线段BE上的一点,且,,将沿AB折起使得二面角是直二面角.(l)求证:CD平面PAB;(2)求直线PE与平面PCD所成角的正切值.19.(12分)已知函数有两个零点,.(Ⅰ)求的取值范围;(Ⅱ)证明:.20.(12分)在平面直角坐标系xOy中,圆C的参数方程为(α为参数,m为常数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ-)=.若直线l与圆C有两个公共点,求实数m的取值范围.21.(12分)已知点,经矩阵对应的变换作用下,变为点.(1)求的值;(2)直线在对应的变换作用下变为直线,求直线的方程.22.(10分)如图,直三棱柱中,,,,为的中点,点为线段上的一点.(1)若,求证:;(2)若,异面直线与所成的角为,求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

由已知利用等差数列的性质可得,由正弦定理可得,根据余弦定理可求,即可判断三角形的形状.【题目详解】解:由题意可知,,因为,所以,则,所以,所以,故为等边三角形.故选:.【题目点拨】本题主要考查了等差数列的性质,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.2、C【解题分析】分析:上面为球的二分之一,下面为长方体.面积为长方体的表面积与半球的面积之和减去半球下底面面积.详解:球的半径为1,故半球的表面积的公式为,半球下底面表面积为长方体的表面积为24,所以几何体的表面积为.点睛:组合体的表面积,要弄懂组合体的结构,哪些被遮挡,哪些是切口.3、C【解题分析】试题分析:因为为偶函数,所以,在上单调递增,并且,因为,,故选C.考点:函数的单调性【思路点睛】本题考察的是比较大小相关知识点,一般比较大小我们可以采用作差法、作商法、单调性法和中间量法,本题的题设中有解析式且告诉我们为偶函数,即可求出参数的值,所以我们采用单调性法,经观察即可得到函数的单调性,然后根据可以通过函数的奇偶性转化到同一侧,进而判断出几个的大小,然后利用函数的单调性即可判断出所给几个值的大小.4、A【解题分析】

分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案.【题目详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:,显然采用5局3胜制对乙更有利,故选A.【题目点拨】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.5、C【解题分析】

模拟程序的运行,根据程序流程,依次判断写出a,b的值,可得当a=b=4时,不满足条件a≠b,输出a的值为4,即可得解.【题目详解】模拟程序的运行,可得a=16,b=12满足条件a≠b,满足条件a>b,a=16−12=4,满足条件a≠b,不满足条件a>b,b=12−4=8,满足条件a≠b,不满足条件a>b,b=4−4=4,不满足条件a≠b,输出a的值为4.故选:C.【题目点拨】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6、A【解题分析】

准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.【题目详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心.,又点在圆上,,即.,故选A.【题目点拨】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.7、B【解题分析】

先根据题意得出随机变量ξ~B3,25【题目详解】由题意知,ξ~B3,15故选:B。【题目点拨】本题考查二项分布概率的计算,关键是要弄清楚随机变量所服从的分布,同时也要理解独立重复试验概率的计算公式,着重考查了推理与运算能力,属于中等题。8、A【解题分析】从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,因为先从其余3人中选出1人担任文艺委员,再从4人中选2人担任学习委员和体育委员,所以不同的选法共有种.本题选择A选项.9、D【解题分析】

用组合数公式计算事件A和事件AB包含的基本事件个数,代入条件概率公式计算.【题目详解】解:两颗骰子各掷一次包含的基本事件的个数是1.事件A包含的基本事件个数有,则.事件AB包含的基本事件个数为10,则.所以在事件A发生的条件下,事件B发生的概率为:,故选:D.【题目点拨】本题考查条件概率,属于基础题.10、B【解题分析】

根据所给关系可证明,即可将三棱锥可补形成长方体,即可求得长方体的外接球半径,即为三棱锥的外接球半径,即可得球的体积.【题目详解】因为平面BCD,所以,又AB=4,,所以,又,所以,则.由此可得三棱锥可补形成长方体如下图所示:设长方体的外接球半径为,则,所以球的体积为,故选:B.【题目点拨】本题考查了三棱锥外接球体积的求法,将三棱锥补全为棱柱是常用方法,属于中档题.11、A【解题分析】

根据充分条件和必要条件的定义分析可得答案.【题目详解】显然“”是“”的充分条件,当时,满足,但是不满足,所以“”不是“”的必要条件,所以“”是“”的充分不必要条件.故选:A【题目点拨】本题考查了充分条件和必要条件的定义,属于基础题.12、C【解题分析】

先求解出气温和用电量的平均数,然后将样本点中心代入回归直线方程,求解出的值,即可预测气温为时的用电量.【题目详解】因为,所以样本点中心,所以,所以,所以回归直线方程为:,当时,.故选:C.【题目点拨】本题考查回归直线方程的求解以及利用回归直线方程估计数值,难度较易.注意回归直线方程过样本点的中心.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

记点正上方的顶点为,在正方体中,得到即是与所成的角,进而可得出结果.【题目详解】如图,记点正上方的顶点为,在正方体中,显然,所以即是与所成的角,易得:故答案:【题目点拨】本题主要考查异面直线所成的角,在几何体中作出异面直线所成的角,即可求解,属于常考题型.14、【解题分析】

分析矩形的组成:两个长,两个宽,然后利用分步乘法计数原理与排列组合思想计算可围成的矩形数.【题目详解】因为矩形由两个长,两个宽构成,第一步选长:从条直线中选条,共有种方法,第二步选宽:从条直线中选条,共有种方法,所以可围成的矩形数为:.故答案为:.【题目点拨】本题考查分步乘法计数原理和排列组合的综合应用,难度一般.对于计数问题,第一步可考虑是属于分类还是分步问题,第二步可考虑选用排列或组合的思想解决问题.15、1【解题分析】

通过二项展开式的通项公式求出展开式的通项,利用的指数为2,求出展开式中的系数.【题目详解】解:展开式的通项为.令得到展开式中的系数是.故答案为:1.【题目点拨】本题是基础题,考查利用二项展开式的通项公式解决二项展开式的特定项问题.考查计算能力.16、.【解题分析】

设正方体的棱长为,以点为坐标原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系,计算出平面的一个法向量,利用空间向量法计算出直线与平面所成角的正弦值.【题目详解】设正方体的棱长为,以点为坐标原点,、、所在直线分别为轴、轴、轴建立如下图所示空间直角坐标系.则点、、、、、,设平面的一个法向量为,则,.由,即,得,令,则,.可知平面的一个法向量为,又.,因此,直线与平面所成角的正弦值为,故答案为.【题目点拨】本题考查直线与平面所成角的正弦的计算,解题的关键就是建立空间直角坐标系,将问题利用空间向量法进行求解,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解题分析】

运用分类讨论去绝对值,然后求出不等式结果由题意得,结合解集得出不等式组求出结果【题目详解】(1)即①当时,原不等式化为,即,解得,∴;②当时,原不等式化为,即,解得,∴.③当时,原不等式化为,即,解得,∴∴不等式的解集为或.(2)不等式可化为问题转化为在上恒成立,又,得∴,∴.【题目点拨】本题考查了含有绝对值问题的不等式,首先需要进行分类讨论去掉绝对值,然后求出不等式结果,在第问中需要进行转化,继而只有一个绝对值问题求解。18、(1)证明见解析.(2).【解题分析】分析:(1)推导出是的斜边上的中线,从而是的中点,由此能证明平面;(2)三棱锥的体积为,由此能求出结果.详解:(1)因为,所以,又,,所以,又因为,所以是的斜边上的中线,所以是的中点,又因为是的中点.所以是的中位线,所以,又因为平面,平面,所以平面.(2)据题设分析知,,,两两互相垂直,以为原点,,,分别为,,轴建立如图所示的空间直角坐标系:因为,且,分别是,的中点,所以,,所以,,,,所以,,,设平面的一个法向量为,则,即,所以,令,则,设直线与平面所成角的大小为,则.故直线与平面所成角的正切值为.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.19、(Ⅰ)(Ⅱ)见解析【解题分析】分析:(1)先令,再求出,再研究函数的图像得到a的取值范围.(2)利用分析法证明不等式,再转化为证明.详解:(Ⅰ)由题意,设,则,当时,函数单调递减,又,故在区间上,在区间上.所以在区间上函数单调递增,在区间上函数单调递减.故.又,当时,,所以.(Ⅱ)不妨设,由(Ⅰ)可知.设函数,要证,只需证即可.又,故,由(Ⅰ)可知函数在区间上单调递增,故只需证明,又,即.设,,又,.所以在区间上单调递减,,所以成立,故.点睛:(1)本题主要考查利用导数研究函数图像和性质,考查利用导数证明不等式和分析法证明不等式,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)j解答本题的关键有三点,其一是转化为,其二是转化为,其三是证明在区间上单调递减.20、.【解题分析】分析:先求圆心C到直线l的距离d=,再解不等式即得m的范围.详解:圆C的普通方程为(x-m)2+y2=1.直线l的极坐标方程化为ρ(cosθ+sinθ)=,即x+y=,化简得x+y-2=2.因为圆C的圆心为C(m,2),半径为2,圆心C到直线l的距离d=,所以d=<2,解得2-2<m<2+2.点睛:(1)本题主要考查参数方程、极坐标方程和普通方程的互化,考查直线和圆的位置关系,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)判断直线与圆的位置关系常用的是几何法,比较圆心到直线的距离与圆的半径的大小关系:①②③21、(1);(2)【解题分析】

(1)根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论