




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西桂林,百色,梧州,北海,崇左五市数学高二下期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于问题:“已知x,y,z是互不相同的正数,求证:三个数x+1A.x+1z,y+1C.x+1z,y+12.设集合,若,则()A. B. C. D.3.高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,甲工厂必须有班级要去,则不同的参观方案有()A.16种 B.18种 C.37种 D.48种4.设,若,则实数是()A.1 B.-1 C. D.05.二项式的展开式的各项中,二项式系数最大的项为()A. B.和C.和 D.6.设函数是的导函数,,,,,则()A. B.C. D.7.命题若,则,是的逆命题,则()A.真,真 B.真,假 C.假,真 D.假,假8.在极坐标系中,直线被圆截得的弦长为()A. B.2 C. D.9.抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为A. B. C. D.10.已知随机变量X服从正态分布且P(X4)=0.88,则P(0X4)=()A.0.88 B.0.76 C.0.24 D.0.1211.已知函数,若函数的图象与轴的交点个数不少于2个,则实数的取值范围是()A. B.C. D.12.集合,那么()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正四面体P-ABC,已知M为AB的中点,则PA与CM所成角的余弦值为____.14.直角三角形中,两直角边分别为,则外接圆面积为.类比上述结论,若在三棱锥中,、、两两互相垂直且长度分别为,则其外接球的表面积为________.15.若命题“,使得成立”是假命题,则实数的取值范围是_______.16.设a、b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出“a、b中至少有一个数大于1”的条件是:_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角的对边分别为,已知,且.(1)求角的大小;(2)若,求的面积.18.(12分)在中,角,,所对的边分别是,,,已知.(1)求的值;(2)若,,,为垂足,求的长.19.(12分)已知函数,.(1)当时,求不等式的解集;(2)若的解集包含,求实数的取值范围.20.(12分)如图所示,四棱锥中,底面,,为中点.(1)试在上确定一点,使得平面;(2)点在满足(1)的条件下,求直线与平面所成角的正弦值.21.(12分)如图,四边形为矩形,平面平面,,,,,点在线段上.(1)求证:平面;(2)若二面角的余弦值为,求的长度.22.(10分)已知:在中,,,分别是角,,所对的边长,是和的等差中项.(Ⅰ)求角;(Ⅱ)若的面积,且,求的周长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
找到要证命题的否定即得解.【题目详解】“已知x,y,z是互不相同的正数,求证:三个数x+1z,y+1x,而它的反面为:三个数x+1z,y+1x,故选:C.【题目点拨】本题主要考查用反证法证明数学命题,命题的否定,属于基础题.2、B【解题分析】分析:先根据得到=1即得a=2,再根据求出b的值,再求则.详解:因为,所以=1,所以a=2.又因为,所以b=1,所以Q={2,1},所以.故答案为:B.点睛:(1)本题主要考查集合的交集补集运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答集合中的参数问题,要注意检验,一是检验是否满足集合元素的互异性,二是检验是否满足每一个条件.3、C【解题分析】
根据题意,用间接法:先计算3个班自由选择去何工厂的总数,再排除甲工厂无人去的情况,由分步计数原理可得其方案数目,由事件之间的关系,计算可得答案.【题目详解】根据题意,若不考虑限制条件,每个班级都有4种选择,共有4×4×4=64种情况,其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有3×3×3=27种方案;则符合条件的有64-27=37种,故选:C.【题目点拨】本题考查计数原理的运用,本题易错的方法是:甲工厂先派一个班去,有3种选派方法,剩下的2个班均有4种选择,这样共有3×4×4=48种方案;显然这种方法中有重复的计算;解题时特别要注意.4、B【解题分析】
根据自变量所在的范围代入相应的解析式计算即可得到答案.【题目详解】解得a=-1,故选B【题目点拨】本题考查分段函数函数值的计算,解决策略:(1)在求分段函数的值f(x0)时,一定要判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.5、C【解题分析】
先由二项式,确定其展开式各项的二项式系数为,进而可确定其最大值.【题目详解】因为二项式展开式的各项的二项式系数为,易知当或时,最大,即二项展开式中,二项式系数最大的为第三项和第四项.故第三项为;第四项为.故选C【题目点拨】本题主要考查二项式系数最大的项,熟记二项式定理即可,属于常考题型.6、B【解题分析】分析:易得到fn(x)表达式以8为周期,呈周期性变化,由于2018÷8余2,故f2008(x)=f2(x),进而得到答案详解:∵f0(x)=ex(cosx+sinx),∴f0′(x)=ex(cosx+sinx)+ex(﹣sinx+cosx)=2excosx,∴f1(x)==excosx,∴f1′(x)=ex(cosx﹣sinx),∴f2(x)==ex(cosx﹣sinx),∴f2′(x)=ex(cosx﹣sinx)+ex(﹣sinx﹣cosx)=﹣2exsinx,∴f3(x)=﹣exsinx,∴f3′(x)=﹣ex(sinx+cosx),∴f4(x)=﹣ex(cosx+sinx),∴f4′(x)=﹣2excosx,∴f5(x)=﹣excosx,∴f6(x)=﹣ex(cosx﹣sinx),∴f7(x)=exsinx,∴f8(x)=ex(cosx+sinx),…,∴=f2(x)=,故选:B.点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.7、C【解题分析】由题意,,所以,得,所以命题为假命题,又因为是的逆命题,所以命题:若,则为真命题,故选C.8、C【解题分析】试题分析:将极坐标化为直角坐标可得和,圆心到直线的距离,故,所以应选C.考点:极坐标方程与直角坐标之间的互化.【易错点晴】极坐标和参数方程是高中数学选修内容中的核心内容,也是高考必考的重要考点.解答这类问题时,一定要扎实掌握极坐标与之交坐标之间的关系,并学会运用这一关系进行等价转换.本题在解答时充分利用题设条件,运用将极坐标方程转化为直角坐标方程,最后通过直角坐标中的运算公式求出弦长,从而使问题巧妙获解.9、C【解题分析】
求△MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,根据抛物线的定义,可知|MF|=|MD|,因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值.根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,因此最小值为xA﹣(﹣1)=5+1=6,∵|AF|==5,∴△MAF周长的最小值为11,故答案为:C.10、B【解题分析】
正态曲线关于对称,利用已知条件转化求解概率即可.【题目详解】因为随机变量服从正态分布,,得对称轴是,,,,故选B.【题目点拨】本题在充分理解正态分布的基础上,充分利用正态分布的对称性解题,是一道基础题.11、C【解题分析】分析:根据的图象与轴的交点个数不少于2个,可得函数的图象与的交点个数不少于2个,在同一坐标系中画出两个函数图象,结合图象即可得到m的取值范围.详解:的图象与轴的交点个数不少于2个,函数的图象与函数的图象的交点个数不少于2个,函数,时,函数为指数函数,过点,时,函数,为对称轴,开口向下的二次函数.,为过定点的一条直线.在同一坐标系中,画出两函数图象,如图所示.(1)当时,①当过点时,两函数图象有两个交点,将点代入直线方程,解得.②当与相切时,两函数图象有两个交点.联立,整理得则,解得,(舍)如图当,两函数图象的交点个数不少于2个.(2)当时,易得直线与函数必有一个交点如图当直线与相切时有另一个交点设切点为,,切线的斜率,切线方程为切线与直线重合,即点在切线上.,解得由图可知,当,两函数图象的交点个数不少于2个.综上,实数的取值范围是故选C.点睛:本题考查函数零点问题,考查数形结合思想、转化思想及分类讨论的思想,具有一定的难度.利用函数零点的情况,求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解(2)分离参数后转化为函数的值域(最值)问题求解(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.12、D【解题分析】
把两个集合的解集表示在数轴上,可得集合A与B的并集.【题目详解】把集合A和集合B中的解集表示在数轴上,如图所示,则A∪B={x|-2<x<3}故选A.【题目点拨】本题考查学生理解并集的定义掌握并集的运算法则,灵活运用数形结合的数学思想解决数学问题,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:取的中点,连接,由三角形中位线定理可得即为与所成的角或其补角,利用余弦定理可得结果.详解:取的中点,连接,由三角形中位线定理可得,,故即为与所成的角或其补角,因为是正四面体,不妨设令其棱长为,则由正四面体的性质可求得,故,故答案为.点睛:本题主要考查余弦定理的应用以及异面直线所成角的求法,求异面直线所成的角的做题步骤分为三步,分别为:作角、证角、求角,尤其是第二步证明过程不可少,是本题易失点分,切记.14、【解题分析】
直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为,将三棱锥补成一个长方体,其外接球的半径为长方体体对角线长的一半。【题目详解】由类比推理可知:以两两垂直的三条侧棱为棱,构造棱长分别为的长方体,其体对角线就是该三棱锥的外接球直径,则半径.所以表面积【题目点拨】本题考查类比推理的思想以及割补思想的运用,考查类用所学知识分析问题、解决问题的能力,属于基础题。15、【解题分析】
根据原命题为假,可得,都有;当时可知;当时,通过分离变量可得,通过求解最值得到结果.【题目详解】由原命题为假可知:,都有当时,,则当时,又,当且仅当时取等号综上所述:本题正确结果:【题目点拨】本题考查根据命题的真假性求解参数范围,涉及到恒成立问题的求解.16、③【解题分析】试题分析:若a=,b=,则a+b>1,但a<1,b<1,故①推不出;若a=b=1,则a+b=2,故②推不出;若a=-2,b=-3,则a2+b2>2,故④推不出;若a=-2,b=-3,则ab>1,故⑤推不出;对于③,即a+b>2,则a,b中至少有一个大于1,反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,故a,b中至少有一个大于1.[来源:Z§考点:不等式性质三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解题分析】
由已知及正弦定理可得,结合范围,利用特殊角的三角函数值可求A的值.
由利用同角三角函数基本关系式可得cosA,由余弦定理可求b的值,进而根据三角形面积公式即可计算得解.【题目详解】(1)因为,所以,所以,即.因为所以,或.(2)因为,所以,所以,解得.所以.【题目点拨】本题主要考查了正弦定理,特殊角的三角函数值,同角三角函数基本关系式,余弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于中档题.18、(1)(2)【解题分析】
(1)根据正弦定理化边为角,再根据两角和正弦公式化简得结果,(2)先根据余弦定理求,再利用三角形面积公式求AD.【题目详解】(1)因为,所以因为,所以,即.因为,所以,所以.则.(2)因为,所以,.在中,由余弦定理可得,即.由,得.所以.【题目点拨】本题考查正弦定理、余弦定理以及三角形面积公式,考查基本分析求解能力,属中档题.19、(1).(2).【解题分析】
(1)利用分类讨论法解绝对值不等式;(2)等价转化为对任意的,恒成立,即对任意的,恒成立,再解不等式得解.【题目详解】(1)当时,.①当时,原不等式可化为,化简得,解得,∴;②当时,原不等式可化为,化简得,解得,∴;③当时,原不等式可化为,化简得,解得,∴;综上所述,不等式的解集是;(2)由题意知,对任意的,恒成立,即对任意的,恒成立,∵当时,,∴对任意的,恒成立,∵,,∴,∴,即实数的取值范围为.【题目点拨】本题主要考查分类讨论法解绝对值不等式,考查绝对值三角不等式的应用和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1).(2).【解题分析】【试题分析】(1)先确定点的位置为等分点,再运用线面平行的判定定理进行证明平面;(2)借助(1)的结论,及线面角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2002年江苏省连云港市中考数学真题【含答案、解析】
- 考研复习-风景园林基础考研试题必考题附答案详解
- 风景园林基础考研资料试题及答案详解【各地真题】
- 《风景园林招投标与概预算》试题A附参考答案详解【研优卷】
- 2025-2026年高校教师资格证之《高等教育法规》通关题库附参考答案详解(a卷)
- 2024年济南演艺集团有限责任公司人员招聘笔试备考题库及答案详解一套
- 民事检察和解制度研究
- “智能低空·融合创新”2025年智能化测绘无人机技术交流会在南昌召开
- 2025年公基常识试题及答案解析(180题)
- 2024年演出经纪人之演出经纪实务押题练习试卷完整
- 一年级100以内计算练习题(口算、竖式)-100以内的计算题
- 中亚高校汉语国际教育发展现状研究
- 《新求精德语强化教程 中级Ⅱ》(第三版)学习指南【词汇短语+单元语法+课文精解+全文翻译+练习答案】
- 苏教版六年级下册数学《3、可能性》课件
- 中式婚礼流程及主持词
- 美国超声心动图学会推荐的成人右心功能评价指南的解读
- 慢病健康管理 高血压患者随访评估与分类干预
- 夏季防暑降温培训课件
- 【浅析如何将游戏化课程融入幼儿一日活动之中2600字】
- 热点攻关 以“生态恢复”例说人与环境的综合考查2023年高考生物二轮复习
- 舞台搭建方面基础知识
评论
0/150
提交评论