2024届黑龙江省绥化市绥棱县林业局中学数学高二下期末质量跟踪监视模拟试题含解析_第1页
2024届黑龙江省绥化市绥棱县林业局中学数学高二下期末质量跟踪监视模拟试题含解析_第2页
2024届黑龙江省绥化市绥棱县林业局中学数学高二下期末质量跟踪监视模拟试题含解析_第3页
2024届黑龙江省绥化市绥棱县林业局中学数学高二下期末质量跟踪监视模拟试题含解析_第4页
2024届黑龙江省绥化市绥棱县林业局中学数学高二下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省绥化市绥棱县林业局中学数学高二下期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是虚数单位,若复数满足,则复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.某班微信群中甲、乙、丙、丁、戊五名同学同时抢4个红包,每人最多抢一个红包,且红包全被抢光,4个红包中有两个2元,两个5元(红包中金额相同视为相同的红包),则甲、乙两人同抢到红包的情况有()A.36种 B.24种 C.18种 D.9种3.已知直线l的参数方程为x=t+1,y=t-1,(tA.0∘ B.45∘ C.904.在中,角A,B,C所对的边分别是a,b,c,若角A,C,B成等差数列,且,则的形状为()A.直角三角形 B.等腰非等边三角形C.等边三角形 D.钝角三角形5.若圆和圆相切,则等于()A.6 B.7 C.8 D.96.由曲线,围成的封闭图形的面积为()A. B. C. D.7.已知直线y=3x﹣1与曲线y=ax+lnx相切,则实数a的值为()A.1 B.2 C.3 D.48.从一批苹果中抽出5只苹果,它们的质量分别为125、a、121、b、127(A.4 B.5 C.2 D.59.甲、乙、丙、丁四名同学组成一个4×100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是()A.甲 B.乙 C.丙 D.丁10.已知数列,都是等差数列,,,设,则数列的前2018项和为()A. B. C. D.11.已知点A0,2,抛物线C:y2=2px(p>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若FMA.18B.14C.212.已知集合,则A. B.C. D.R二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与曲线相切,则的值为___________.14.过点(,)且与极轴平行的直线的极坐标方程是_______.15.计算定积分-1116.在平面直角坐标系xOy中,P是曲线y=x+4x(x>0)上的一个动点,则点P到直线x+y=0三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角所对的边分别是,已知.(1)求;(2)若,且,求的面积.18.(12分)若一圆锥的底面半径为4,体积是.(1)求该圆锥的母线长;(2)已知该圆锥的顶点为,并且、为圆锥的两个母线,求线段长度为何值时,△的面积取得最大值?19.(12分)某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.(1)求一名顾客在一次摸奖活动中获得元的概率;(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.20.(12分)随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐,下表是西南地区某大学近五年的录取平均分与省一本线对比表:年份20142015201620172018年份代码12345省一本线505500525500530录取平均分533534566547580录取平均分与省一本线分差y2834414750(1)根据上表数据可知,y与t之间存在线性相关关系,求y关于t的线性回归方程;(2)据以往数据可知,该大学每年的录取分数X服从正态分布,其中为当年该大学的录取平均分,假设2019年该省一本线为520分,李华2019年高考考了569分,他很喜欢这所大学,想第一志愿填报,请利用概率与统计知识,给李华一个合理的建议.(第一志愿录取可能性低于,则建议谨慎报考)参考公式:,.参考数据:,.21.(12分)如图,在一个水平面内,河流的两岸平行,河宽1(单位:千米)村庄A,B和供电站C恰位于一个边长为2(单位:千米)的等边三角形的三个顶点处,且A,C位于河流的两岸,村庄A侧的河岸所在直线恰经过BC的中点D.现欲在河岸上A,D之间取一点E,分别修建电缆CE和EA,EB.设∠DCE=θ,记电缆总长度为f(θ)(单位:千米).(1)求f(θ)的解析式;(2)当∠DCE为多大时,电缆的总长度f(θ)最小,并求出最小值.22.(10分)已知曲线(t为参数),曲线.(设直角坐标系x正半轴与极坐系极轴重合).(1)求曲线与直线的普通方程;(2)若点P在曲线上,Q在直线上,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】,,复数对应的点的坐标为,,在第三象限.故选.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.2、C【解题分析】

分三种情况:(1)都抢到2元的红包(2)都抢到5元的红包(3)一个抢到2元,一个抢到5元,由分类计数原理求得总数。【题目详解】甲、乙两人都抢到红包一共有三种情况:(1)都抢到2元的红包,有种;(2)都抢到5元的红包,有种;(3)一个抢到2元,一个抢到5元,有种,故总共有18种.故选C.【题目点拨】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,是根据得红包情况进行分类。3、B【解题分析】

将直线l的参数方程化为普通方程,得出该直线的斜率,即可得出该直线的倾斜角。【题目详解】直线l的直角坐标方程为x-y-2=0,斜率k=tanα=1,所以α=45【题目点拨】本题考查利用直线的参数方程求直线的倾斜角,参数方程化为普通方程是常用方法,而参数方程化为普通方程有两种常见的消参方法:①加减消元法;②代入消元法;③平方消元法。4、C【解题分析】

由已知利用等差数列的性质可得,由正弦定理可得,根据余弦定理可求,即可判断三角形的形状.【题目详解】解:由题意可知,,因为,所以,则,所以,所以,故为等边三角形.故选:.【题目点拨】本题主要考查了等差数列的性质,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.5、C【解题分析】

根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得的值并验证即可得结果.【题目详解】圆的圆心,半径为5;圆的圆心,半径为r.若它们相内切,则圆心距等于半径之差,即=|r-5|,求得r=18或-8,不满足5<r<10.若它们相外切,则圆心距等于半径之和,即=|r+5|,求得r=8或-18(舍去),故选C.【题目点拨】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,两圆心间的距离为,比较与及与的大小,即可得到两圆的位置关系.6、C【解题分析】围成的封闭图形的面积为,选C.7、B【解题分析】

对函数求导,设切点,表示出切线方程,与已知切线相同,从而得到关于和的方程组,解出的值.【题目详解】设切点,因为,所以所以切线斜率则切线为整理得又因为切线方程为所以得,解得故选B项.【题目点拨】本题考查利用导数的几何意义,未知切点表示切线方程,属于中档题.8、C【解题分析】

本题由题意可知,首先可以根据a、b中一个是124,得出另一个是:【题目详解】从一批苹果中抽出5只苹果,它们的质量分别为125、a、该样本的中位数和平均值均为124,所以a,b中一个是另一个是:5×124-125-124-121-127=123,所以样本方差s2所以该样本的标准差s是2,故选:C。【题目点拨】本题考查样本的标准差的求法,考查平均数、中位数、方差、标准差等基础知识,考查运算求解能力,是基础题,本题主要是能够读懂题目,能从题目所给条件中找出a、9、C【解题分析】

跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.【题目详解】由题意得乙、丙均不跑第一棒和第四棒,∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.故跑第三棒的是丙.故选:C.【题目点拨】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.10、D【解题分析】

利用,求出数列,的公差,可得数列,的通项公式,从而可得,进而可得结果.【题目详解】设数列,的公差分别为,,则由已知得,,所以,,所以,,所以,所以数列的前2018项和为,故选D.【题目点拨】本题主要考查等差数列通项公式基本量运算,考查了数列的求和,意在考查综合应用所学知识解答问题的能力,属于中档题.11、C【解题分析】试题分析:设,是点到准线的距离,,|FM||MN|=55,即,那么,即直线的斜率是-2,所以,解得,故选C.考点:抛物线的简单性质【思路点睛】此题考察抛物线的性质,和数形结合思想的考察,属于偏难点的基础题型,对于抛物线的考察不太同于椭圆和双曲线,对应抛物线的基础题型,当图形中有点到焦点的距离,就一定联想到点到准线的距离,再跟据平面几何的关系分析,比如此题,|FM||MN|=55,转化为,那分析图像等于知道的余弦值,也就知道了直线12、D【解题分析】

先解出集合与,再利用集合的并集运算得出.【题目详解】,,,故选D.【题目点拨】本题考查集合的并集运算,在计算无限数集时,可利用数轴来强化理解,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

试题分析:设切点,则,,.考点:导数的几何意义.14、【解题分析】

先根据公式,,求出点的直角坐标,根据题意得出直线的斜率为0,用点斜式表示出方程,再化为极坐标方程.【题目详解】由,,可得点的直角坐标为∵直线与极轴平行

∴在直角坐标系下直线的斜率为0

∴直线直角坐标方程为y=1

∴直线的极坐标方程是

故答案为.【题目点拨】本题考查了简单曲线的极坐标方程,解答的关键是利用基本公式,,注意转化思想,属于基础题.15、2【解题分析】试题分析:-1考点:定积分计算16、4.【解题分析】

将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【题目详解】当直线x+y=0平移到与曲线y=x+4x相切位置时,切点Q即为点P到直线x+y=0由y'=1-4x2即切点Q(2则切点Q到直线x+y=0的距离为2+3故答案为:4.【题目点拨】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】试题分析:利用正弦定理和余弦定理及三角形面积公式解斜三角形是高考高频考点,利用正弦定理和余弦定理进行边转角或角转边是常用的方法,本题利用正弦定理“边转角”后,得出角C,第二步利用余弦定理求出边a,c,再利用面积公式求出三角形的面积.试题解析:(1)由正弦定理,得,因为,解得,.(2)因为.由余弦定理,得,解得.的面积.【题目点拨】利用正弦定理和余弦定理及三角形面积公式解斜三角形是高考高频考点,利用正弦定理和余弦定理进行边转角或角转边是常用的方法,已知两边及其夹角求第三边或已知三边求任意角使用于心定理,已知两角及任意边或已知两边及一边所对的角借三角形用正弦定理,另外含经常利用三角形面积公式以及与三角形的内切圆半径与三角形外接圆半径发生联系,要灵活使用公式.18、(1)5;(2).【解题分析】

(1)先根据体积求高,再根据母线与高的关系求结果;(2)先确定△的面积最大值何时取得,再根据勾股定理求长度.【题目详解】(1)因为圆锥的底面半径为4,体积是,所以因此母线长为;(2)△的面积因为,所以当时,△的面积取最大值,此时【题目点拨】本题考查圆锥的体积以及截面积,考查基本分析求解能力,属基础题.19、(1);(2)见解析【解题分析】

(1)根据古典概型概率计算公式可求得结果;(2)分别求出一名顾客摸球中奖元和不中奖的概率;确定所有可能的取值为:,,,,,分别计算每个取值对应的概率,从而得到分布列;利用数学期望计算公式求解期望即可.【题目详解】(1)记一名顾客摸球中奖元为事件从袋中摸出两只球共有:种取法;摸出的两只球均是红球共有:种取法(2)记一名顾客摸球中奖元为事件,不中奖为事件则:,由题意可知,所有可能的取值为:,,,,则;;;;随机变量的分布列为:【题目点拨】本题考查古典概型概率问题求解、离散型随机变量的分布列和数学期望的求解,关键是能够根据通过积事件的概率公式求解出每个随机变量的取值所对应的概率,从而可得分布列.20、(1);(2)建议李华第一志愿谨慎报考该大学.【解题分析】

(1)由表中的数据代入公式,计算出和,即可得到关于的线性回归方程;(2)结合(1)计算出2019年录取平均分,再根据该大学每年的录取分数X服从正态分布,由正态分布的性质可计算出李华被录取的概率,由此得到结论.【题目详解】(1)由题知:,所以得:故所求回归方程为:;(2)由(1)知:当时,,故该大学2019年的录取平均分为577.1分.又因为所以李华被录取的概率:故建议李华第一志愿谨慎报考该大学.【题目点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论