2024届北京专家数学高二第二学期期末预测试题含解析_第1页
2024届北京专家数学高二第二学期期末预测试题含解析_第2页
2024届北京专家数学高二第二学期期末预测试题含解析_第3页
2024届北京专家数学高二第二学期期末预测试题含解析_第4页
2024届北京专家数学高二第二学期期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京专家数学高二第二学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,若输出的,则判断框内应填入的条件是()A. B. C. D.2.设集合,,则A. B. C. D.3.一位母亲根据儿子岁身高的数据建立了身高与年龄(岁)的回归模型,用这个模型预测这个孩子岁时的身高,则正确的叙述是()A.身高在左右 B.身高一定是C.身高在以上 D.身高在以下4.准线为的抛物线标准方程是()A. B. C. D.5.设在定义在上的偶函数,且,若在区间单调递减,则()A.在区间单调递减 B.在区间单调递增C.在区间单调递减 D.在区间单调递增6.若满足约束条件,则的最小值是()A.0 B. C. D.37.设随机变量服从正态分布,若,则实数等于()A. B. C. D.8.若则满足条件的集合A的个数是A.6 B.7 C.8 D.99.下列函数中,既是偶函数又在单调递增的是()A. B. C. D.10.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度11.已知函数,如果函数在定义域为(0, +∞)只有一个极值点,则实数的取值范围是A. B. C. D.12.在正四棱锥中,,直线与平面所成的角为,为的中点,则异面直线与所成角为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.下表为生产产品过程中产量(吨)与相应的生产耗能(吨)的几组相对应数据:根据上表提供的数据,得到关于的线性回归方程为,则__________.14.设函数,,对于任意的,不等式恒成立,则正实数的取值范围________15.的展开式中的系数为,则__________.16.若函数在区间上为单调增函数,则的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)人站成两排队列,前排人,后排人.(1)一共有多少种站法;(2)现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,求有多少种不同的加入方法.18.(12分)在极坐标系中,极点为0,已知曲线与曲线交于不同的两点.求:(1)的值;(2)过点且与直线平行的直线的极坐标方程.19.(12分)在锐角三角形中,角的对边分别为,且.(1)求角的大小;(2)若,求的值.20.(12分)在平面直角坐标系xOy中,曲线C的参数方程是(为参数),把曲线C的横坐标缩短为原来的,纵坐标缩短为原来的一半,得到曲线直线l的普通方程是,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程和曲线的普通方程;(2)记射线()与交于点A,与l交于点B,求的值.21.(12分)已知函数.(Ⅰ)当时,解不等式;(Ⅱ)若,对任意都有恒成立,求实数的取值范围.22.(10分)函数,.(Ⅰ)求函数的极值;(Ⅱ)若,证明:当时,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】S=0,k=1,k=2,S=2,否;k=3,S=7,否;k=4,S=18,否;k=5,S=41,否;k=6,S=88,是.所以条件为k>5,故选B.2、C【解题分析】由,得:∴;∵,∴∴故选C3、A【解题分析】

由线性回归方程的意义得解.【题目详解】将代入线性回归方程求得由线性回归方程的意义可知是预测值,故选.【题目点拨】本题考查线性回归方程的意义,属于基础题.4、A【解题分析】准线为的抛物线标准方程是,选A.5、D【解题分析】

根据题设条件得到函数是以2为周期的周期函数,同时关于对称的偶函数,根据对称性和周期性,即可求解.【题目详解】由函数满足,所以是周期为2的周期函数,由函数在区间单调递减,可得单调递减,所以B不正确;由函数在定义在上的偶函数,在区间单调递减,可得在区间单调递增,所以A不正确;又由函数在定义在上的偶函数,则,即,所以函数的图象关于对称,可得在区间单调递增,在在区间单调递增,所以C不正确,D正确,故选D.【题目点拨】本题主要考查了函数的单调性与对称性的应用,以及函数的周期性的判定,着重考查了推理与运算能力,属于基础题.6、B【解题分析】可行域为一个三角形及其内部,其中,所以直线过点时取最小值,选B.7、B【解题分析】分析:根据随机变量符合正态分布,又知正态曲线关于x=4对称,得到两个概率相等的区间关于x=4对称,得到关于a的方程,解方程即可.详解:∵随机变量ξ服从正态分布N(4,3),∵P(ξ<a﹣5)=P(ξ>a+1),∴x=a﹣5与x=a+1关于x=4对称,∴a﹣5+a+1=8,∴2a=12,∴a=6,故选:C.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.8、C【解题分析】

根据题意A中必须有1,2这两个元素,因此A的个数应为集合4,的子集的个数.【题目详解】解:,集合A中必须含有1,2两个元素,因此满足条件的集合A为,,,,,,,共8个.故选C.【题目点拨】本题考查了子集的概念,熟练掌握由集合间的关系得到元素关系是解题的关键有n个元素的集合其子集共有个9、B【解题分析】

根据函数的奇偶性和单调性,对选项逐一分析,由此得出正确选项.【题目详解】对于A选项,由于定义域不关于原点对称,故为非奇非偶函数.对于B选项,函数为偶函数,当时,为增函数,故B选项正确.对于C选项,函数图像没有对称性,故为非奇非偶函数.对于D选项,在上有增有减.综上所述,本小题选B.【题目点拨】本小题主要考查函数的奇偶性与单调性,属于基础题.10、D【解题分析】因为把的图象向右平移个单位长度可得到函数的图象,所以,为了得到函数的图象,可以将函数的图象,向右平移个单位长度故选D.11、C【解题分析】分析:求函数的导函数,并化简整理,结合函数在定义域为(0, +∞)只有一个极值点进行讨论即可.详解:函数的定义域为(0, +∞)①当时,恒成立,令,则,即在上单调递增,在上单调递减,则在处取得极小值,符合题意;②当时,时,又函数在定义域为(0, +∞)只有一个极值点,在处取得极值.从而或恒成立,构造函数,,设与相切的切点为,则切线方程为,因为切线过原点,则,解得,则切点为此时.由图可知:要使恒成立,则.综上所述:.故选:C.点睛:导函数的零点并不一定就是原函数的极值点.所以在求出导函数的零点后一定要注意分析这个零点是不是原函数的极值点.12、C【解题分析】试题分析:连接交于点,连接.因为为中点,所以,所以即为异面直线与所成的角.因为四棱锥为正四棱锥,所以,所以为在面内的射影,所以即为与面所成的角,即,因为,所以所以在直角三角形中,即面直线与所成的角为故选C.考点:直线与平面所成的角,异面直线所成的角【名师点睛】本题考查异面直线所成角,直线与平面所成的角,考查线面垂直,比较基础连接AC,BD交于点O,连接OE,OP,先证明∠PAO即为PA与面ABCD所成的角,即可得出结论.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a的值即可.详解:由题意可得:,,线性回归方程过样本中心点,则:,解得:.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.14、【解题分析】

先分析的单调性,然后判断的正负,再利用恒成立的条件确定的范围.【题目详解】,令,则,所以在单调递减,在单调递增,则;,令,则,所以在单调递增,在单调递减,则;当,所以不成立,故;因为恒成立,所以恒成立,所以,即,解得,即.【题目点拨】恒成立问题解题思路:当恒成立时,则;存在性问题解题思路:当存在满足时,则有.15、【解题分析】由条件知的展开式中的系数为:解得=故答案为.16、[1,+∞)【解题分析】函数在区间上为单调增函数等价于导函数在此区间恒大于等于0,故三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)根据题意,将7个人全排列,再将其中前3人安排在前排,后面4人安排在后排即可,由排列数公式计算可得答案;(2)根据题意,分2步进行分析:①前排3人有4个空,从甲乙丙3人中选1人插入;②对于后排,分2种情况讨论,求出后排的排法数目,由分步计数原理计算可得答案.【题目详解】(1)根据题意,将7个人全排列,再将其中前3人安排在前排,后面4人安排在后排即可;则有种排法,(2)根据题意,分2步进行分析:①前排3人有4个空,从甲乙丙3人中选1人插入,有种排法;②对于后排,若插入的2人不相邻有种,若相邻有种,则后排的安排方法有种;则有种排法.【题目点拨】本题考查排列、组合的应用,考查逻辑推理能力、运算求解能力,求解时注意分类讨论思想的运用.18、(1);(2).【解题分析】

试题分析:(1)把曲线C1和曲线C2的方程化为直角坐标方程,它们分别表示一个圆和一条直线.利用点到直线的距离公式求得圆心到直线的距离为d的值,再利用弦长公式求得弦长|AB|的值.

(2)用待定系数法求得直线l的方程,再根据极坐标方程与直角坐标方程的互化公式求得l的极坐标方程试题解析:(1)∵,∴,又∵,可得,∴,圆心(0,0)到直线的距离为∴.(2)∵曲线的斜率为1,∴过点且与曲线平行的直线的直角坐标方程为,∴直线的极坐标为,即.19、(1);(2)1【解题分析】

(1)利用二倍角公式化简即得A的值.(2)先利用正弦定理化简得,再利用余弦定理求a的值.【题目详解】⑴,又因为为锐角三角形,,,.⑵,,,.【题目点拨】本题主要考查三角恒等变换,考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理能力.20、(1);(2)【解题分析】

(1)由为参数),消去参数,得曲线的普通方程,然后利用伸缩与平移变换可得的普通方程;(2)分别把代入与的极坐标方程,求得,的值,则的值可求.【题目详解】(1)将代入直线l的方程,得:化简得直线l的极坐标方程为.由曲线C的参数方程消去参数得曲线C的普通方程为:,伸缩变换,即,代入,得,即故曲线的普通方程为:.(2)由(1)将曲线的普通方程化为极坐标方程为,将()代入,得,将()代入得,故.【题目点拨】本题考查参数方程与普通方程,以及极坐标方程与直角坐标方程的互化,考查直线参数方程中参数的几何意义及其应用,着重考查了运算与求解能力,是中档题.21、(Ⅰ)(−∞,−5)∪(1,+∞);(Ⅱ)(0,6]【解题分析】

(Ⅰ)由题知当a=−1时,不等式等价于|x+3|+|x+1|>6,根据绝对值的几何意义能求出不等式的解集.

(Ⅱ)由,对任意都有,只需f(x)的最小值大于等于的最大值即可,转化成函数最值问题建立不等关系式,由此能求出a的取值范围.【题目详解】(Ⅰ)∵函数,∴当a=−1时,不等式等价于|x+3|+|x+1|>6,根据绝对值的几何意义:|x+3|+|x+1|>6可以看作数轴上的点x到点−3和点−1的距离之和大于6,则点x到点−3和点−1的中点O的距离大于3即可,∴点x在−5或其左边及1或其右边,即x<−5或x>1.∴不等式的解集为(−∞,−5)∪(1,+∞).(Ⅱ)∵,对任意都有,只需f(x)的最小值大于等于的最大值即可.由可得,,设,根据二次函数性质,,∴,解得,又,∴∴a的取值范围是(0,6].【题目点拨】本题考查绝对值三角不等式,绝对值不等式的解法:(1)数形结合:利用绝对值不等式的几何意义[即(x,0)到(a,0)与(b,0)的距离之和]求解.(2)分类讨论:利用“零点分段法”求解.(3)构造函数:利用函数的图像求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论