版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
淮南市重点中学2024届数学高二下期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给出一个命题p:若,且,则a,b,c,d中至少有一个小于零,在用反证法证明p时,应该假设()A.a,b,c,d中至少有一个正数 B.a,b,c,d全为正数C.a,b,c,d全都大于或等于0 D.a,b,c,d中至多有一个负数2.设双曲线:的左、右焦点分别为、,点在上,且满足.若满足条件的点只在的左支上,则的离心率的取值范围是()A. B. C. D.3.下列问题中的随机变量不服从两点分布的是()A.抛掷一枚骰子,所得点数为随机变量B.某射手射击一次,击中目标的次数为随机变量C.从装有5个红球,3个白球的袋中取1个球,令随机变量{1,取出白球;0,取出红球}D.某医生做一次手术,手术成功的次数为随机变量4.若函数f(x)=xex,x≥0x2+3x,x<0A.[0,2) B.[0,2] C.[-3,0]5.已知抛物线的焦点为F,点是抛物线C上一点,以点M为圆心的圆与直线交于E,G两点,若,则抛物线C的方程是()A. B.C. D.6.如图,正方体的棱长为4,动点E,F在棱上,动点P,Q分别在棱AD,CD上.若,,,(大于零),则四面体PEFQ的体积A.与都有关 B.与m有关,与无关C.与p有关,与无关 D.与π有关,与无关7.某创业公司共有36名职工,为了了解该公司职工的年龄构成情况,随机采访了9位代表,将数据制成茎叶图如图,若用样本估计总体,年龄在内的人数占公司总人数的百分比是(精确到)()A. B. C. D.8.命题“”的否定是()A. B.C. D.9.中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为()A.6 B.5 C.4 D.210.的展开式中的系数是()A.16 B.70 C.560 D.112011.在一个棱长为的正方体的表面涂上颜色,将其适当分割成棱长为的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()A. B. C. D.12.已知双曲线的左右焦点分别为,,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知经停某站的高铁列车有100个车次,随机从中选取了40个车次进行统计,统计结果为:10个车次的正点率为0.97,20个车次的正点率为0.98,10个车次的正点率为0.99,则经停该站的所有高铁列车正点率的标准差的点估计值为______(精确到0.001).14.已知满足约束条件若目标函数的最大值为7,则的最小值为_______.15.数列{an}满足,若{an}单调递增,则首项a1的范围是_____.16.定义方程的实数根叫做函数的“新驻点”,如果函数,,()的“新驻点”分别为,,,那么,,的大小关系是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线(为参数),曲线(为参数).(1线与曲线的普通方程;(2),若直线与曲线相交于两点(点在点的上方),求的值.18.(12分)如图(1).在中,,,,、分别是、上的点,且,将沿折起到的位置,使,如图(2).(1)求证:平面;(2)当点在何处时,三棱锥体积最大,并求出最大值;(3)当三棱锥体积最大时,求与平面所成角的大小.19.(12分)设曲线.(Ⅰ)若曲线表示圆,求实数的取值范围;(Ⅱ)当时,若直线与曲线交于两点,且,求实数的值.20.(12分)某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.广告投入/万元12345销售收益/万元23257(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示与之间存在线性相关关系,求关于的回归方程;(Ⅲ)若广告投入万元时,实际销售收益为万元,求残差.附:,21.(12分)如图所示,已知是椭圆:的右焦点,直线:与椭圆相切于点.(1)若,求;(2)若,,求椭圆的标准方程.22.(10分)已知函数f(x)=x(1)判断并证明f(x)在[0,1(2)若x∈[-1,2],求
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
由“中至少一个小于零”的否定为“全都大于等于”即可求解.【题目详解】因为“a,b,c,d中至少有一个小于零”的否定为“全都大于等于”,
所以由用反证法证明数学命题的方法可得,应假设“全都大于等于”,
故选:C.【题目点拨】本题主要考查了反证法,反证法的证明步骤,属于容易题.2、C【解题分析】
本题需要分类讨论,首先需要讨论“在双曲线的右支上”这种情况,然后讨论“在双曲线的左支上”这种情况,然后根据题意,即可得出结果。【题目详解】若在双曲线的右支上,根据双曲线的相关性质可知,此时的最小值为,因为满足题意的点在双曲线的左支,所以,即,所以①,若在双曲线的左支上,根据双曲线的相关性质可知,此时的最小值为,想要满足题意的点在双曲线的左支上,则需要满足,即,所以②由①②得,故选C。【题目点拨】本题考查了圆锥曲线的相关性质,主要考查了圆锥曲线中双曲线的相关性质,考查双曲线的离心率的取值范围,考查双曲线的长轴、短轴以及焦距之间的关系,考查推理能力,是中档题。3、A【解题分析】
两点分布又叫分布,所有的实验结果有两个,,,满足定义,不满足.【题目详解】两点分布又叫分布,所有的实验结果有两个,,,满足定义,而,抛掷一枚骰子,所得点数为随机变量,则的所有可能的结果有6种,不是两点分布.故选:.【题目点拨】本题考查了两点分布的定义,意在考查学生对这些知识的理解掌握水平,属于基础题.4、A【解题分析】
先作y=f(x)的图象与直线y=-x+2的图象在同一直角坐标系中的位置图象,再结合函数与方程的综合应用即可得解.【题目详解】设h(x)=xe则h(x)=1-x则h(x)在(0,1)为增函数,在(1,+∞)为减函数,则y=f(x)的图象与直线y=-x+2的图象在同一直角坐标系中的位置如图所示,由图可知,当g(x)有三个零点,则a的取值范围为:0⩽a<2,故选:A.【题目点拨】本题考查了作图能力及函数与方程的综合应用,属于中档题.5、C【解题分析】
作,垂足为点D.利用点在抛物线上、,结合抛物线的定义列方程求解即可.【题目详解】作,垂足为点D.由题意得点在抛物线上,则得.①由抛物线的性质,可知,,因为,所以.所以,解得:.②.由①②,解得:(舍去)或.故抛物线C的方程是.故选C.【题目点拨】本题考查抛物线的定义与几何性质,属于中档题.6、C【解题分析】
连接、交于点,作,证明平面,可得出平面,于此得出三棱锥的高为,再由四边形为矩形知,点到的距离为,于此可计算出的面积为,最后利用锥体的体积公式可得出四面体的体积的表达式,于此可得出结论.【题目详解】如下图所示,连接、交于点,作,在正方体中,平面,且平面,,又四边形为正方形,则,且,平面,即平面,,平面,且,易知四边形是矩形,且,点到直线的距离为,的面积为,所以,四面体的体积为,因此,四面体的体积与有关,与、无关,故选C.【题目点拨】本题考查三棱锥体积的计算,解题的关键在于寻找底面和高,要充分结合题中已知的线面垂直的条件,找三棱锥的高时,只需过点作垂线的平行线可得出高,考查逻辑推理能力,属于难题.7、A【解题分析】
求出样本平均值与方差,可得年龄在内的人数有5人,利用古典概型概率公式可得结果.【题目详解】,,年龄在内,即内的人数有5人,所以年龄在内的人数占公司总人数的百分比是等于,故选A.【题目点拨】样本数据的算术平均数公式.样本方差公式,标准差.8、C【解题分析】
命题的否定:任意变存在,并对结论进行否定.【题目详解】命题的否定需要将限定词和结论同时否定,题目中:为限定词,为条件,为结论;而的否定为,的否定为,所以的否定为故本题正确答案为C.【题目点拨】本题考查了命题的否定,属于简单题.9、C【解题分析】
有茎叶图,找出获得“诗词能手”的称号的学生人数,求得概率,再利用分层抽样求得答案.【题目详解】由茎叶图可得,低于85分且不低于70分的学生共有16人,所以获得“诗词能手”的称号的概率为:所以分层抽样抽选10名学生,获得“诗词能手”称号的人数为:故选C【题目点拨】本题考查了茎叶图以及分层抽样,属于基础题.10、D【解题分析】
设含的为第,所以,故系数为:,选D.11、C【解题分析】
由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解.【题目详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为.故选:C.【题目点拨】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12、B【解题分析】
先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.【题目详解】设直线与圆相切于点,因为是以圆的直径为斜边的圆内接三角形,所以,又因为圆与直线的切点为,所以,又,所以,因此,因此有,所以,因此渐近线的方程为.故选B【题目点拨】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据平均数的公式,求出平均数,再根据标准差公式求出标准差即可.【题目详解】由题意可知:所有高铁列车平均正点率为:.所以经停该站的所有高铁列车正点率的标准差的点估计值为:故答案为:【题目点拨】本题考查了平均数和标准差的运算公式,考查了应用数学知识解决实际问题的能力.14、7【解题分析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.
考点:1、线性规划的应用;2、利用基本不等式求最值.15、(﹣∞,﹣1)∪(3,+∞)【解题分析】
先表示出,结合{an}单调递增可求首项a1的范围.【题目详解】因为,所以,解得或,则有或由于,所以或解得或,故答案为:.【题目点拨】本题主要考查数列的单调性,数列的单调性一般通过相邻两项差的符号来确定,侧重考查逻辑推理和数学运算的核心素养.16、【解题分析】试题分析:,由,得;,由,得由,,由零点存在定理得;,由得,即,,考点:1、新定义的应用;2、零点存在定理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】试题分析:(1)根据加减消元法得直线的普通方程;根据三角函数平方关系得曲线的普通方程(2)由椭圆的定义知:,根据直线参数方程几何意义得,将直线参数方程代入曲线的普通方程,根据韦达定理可得结果试题解析:解:(1)由直线已知直线(为参数),消去参数得:曲线(为参数)消去参数得:.(2)设将直线的参数方程代入得:由韦达定理可得:结合图像可知,由椭圆的定义知:.18、(1)见解析(2)点位于中点时,三棱锥体积最大,最大值为(3)【解题分析】
(1)根据线面垂直的判定定理证明;(2)将三棱锥的体积表示成某个变量的函数,再求其最大值;(3)先找出线面角的平面角,再解三角形求角.【题目详解】(1)证明:∵,,∴,因此,所以,又∵,∴平面;(2)解:设,则,由(1),又因为,,∴平面;所以,因此当,即点位于中点时,三棱锥体积最大,最大值为;(3)解:如图,联结,由于,且,∴,即,因此即为与平面所成角,∵,∴,所以,即与平面所成角的大小为.【题目点拨】本题考查线面垂直的证明和体积的最值以及求线面角,属于中档题.19、(1)或.(2).【解题分析】分析:(Ⅰ)根据圆的一般方程的条件列不等式求出的范围;
(Ⅱ)利用垂径定理得出圆的半径,从而得出的值.详解:(Ⅰ)曲线C变形可得:,由可得或(Ⅱ)因为a=3,所以C的方程为即,所以圆心C(3,0),半径,因为所以C到直线AB的距离,解得..点睛:本题考查了圆的标准方程,考查圆的弦长的求法,属于基础题.20、(1).(2).(3).【解题分析】分析:(Ⅰ)设各小长方形的宽度为,由频率直方图各小长方形的面积总和为,可得,从而可得结果;(Ⅱ)利用平均数公式求出平均数、利用样本中心的性质结合公司可求得回归系数,从而可写出线性回归方程;(Ⅲ)计算当时,销售收益预测值,再求残差值.详解:(Ⅰ)设各小长方形的宽度为,由频率直方图各小长方形的面积总和为,可知,故.(Ⅱ)由题意,可知,,,,根据公式,可求得,,所以关于的回归方程为.(Ⅲ)当时,销售收益预测值(万元),又实际销售收益为万元,所以残差点睛:求回归直线方程的步骤:①确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件公司总经理聘任合同
- 河道整治自卸车租赁协议
- 政府机构租赁合同-政府
- 垃圾处理保温系统安装协议
- 高空水电站设备维护合同
- 资产转让协议三篇
- 芹菜收购合同范本(2篇)
- 公交车广告违约终止合同通知书
- 集体合同培训材料
- 烟酒货物运输合同范例
- 2024短剧出海白皮书
- 2024青海海东市水务集团限责任公司招聘27人(高频重点提升专题训练)共500题附带答案详解
- 幼儿园户外混龄建构游戏案例分析
- 2024年印尼叔丁醇钾市场竞争态势与及未来趋势预测报告
- 旅游公司联营协议
- JGJ52-2006 普通混凝土用砂、石质量及检验方法标准
- JGJ31-2003 体育建筑设计规范
- 部编版四年级上册道德与法治期末测试卷【全优】
- 产品研发项目立项书模板
- 自然科学基础综合练习及答案
- 生物药物分析练习题考试题及详细答案
评论
0/150
提交评论