2024届安徽省淮北市相山区淮北市第一中学数学高二第二学期期末质量检测模拟试题含解析_第1页
2024届安徽省淮北市相山区淮北市第一中学数学高二第二学期期末质量检测模拟试题含解析_第2页
2024届安徽省淮北市相山区淮北市第一中学数学高二第二学期期末质量检测模拟试题含解析_第3页
2024届安徽省淮北市相山区淮北市第一中学数学高二第二学期期末质量检测模拟试题含解析_第4页
2024届安徽省淮北市相山区淮北市第一中学数学高二第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省淮北市相山区淮北市第一中学数学高二第二学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为虚数单位,若复数满足,则()A. B.C. D.2.二项式的展开式中的系数是()A. B. C. D.3.已知,,,则()A.0.6 B.0.7 C.0.8 D.0.94.函数的定义域为,且,当时,;当时,,则A.672 B.673 C.1345 D.13465.已知双曲线的一条渐近线方程为,则此双曲线的离心率为()A. B. C. D.6.已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为.若,其中为常数,则动点M的轨迹不可能是()A.圆 B.椭圆 C.抛物线 D.双曲线7.若复数满足(为虚数单位),则=()A.1 B.2 C. D.8.若、、,且,则下列不等式中一定成立的是()A. B. C. D.9.正切函数是奇函数,是正切函数,因此是奇函数,以上推理()A.结论正确 B.大前提不正确 C.小前提不正确 D.以上均不正确10.函数的最小正周期是()A. B. C. D.11.若当时,函数取得最大值,则()A. B. C. D.12.给出下列说法:(1)命题“,”的否定形式是“,”;(2)已知,则;(3)已知回归直线的斜率的估计值是2,样本点的中心为,则回归直线方程为;(4)对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;(5)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变.其中正确说法的个数为()A.2 B.3 C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.若复数满足,则__________.14.已知,且,则的最小值是______.15.复数z=2-i16.已知正数满足,则的最小值____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,圆为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线l的极坐标方程为.分别求圆的极坐标方程和曲线的直角坐标方程;设直线交曲线于两点,曲线于两点,求的长;为曲线上任意一点,求的取值范围.18.(12分)已知二次函数,设方程有两个实根(Ⅰ)如果,设函数的图象的对称轴为,求证:;(Ⅱ)如果,且的两实根相差为2,求实数的取值范围.19.(12分)已知展开式中的倒数第三项的系数为45,求:(1)含的项;(2)系数最大的项.20.(12分)已知在的展开式中,只有第5项的二项式系数最大.(1)求含的项的系数;(2)求展开式中所有的有理项.21.(12分)已知数列的前n项和,.(1)求数列的通项公式;(2)设,,求数列的前n项和.22.(10分)已知函数.(1)的最小正周期及单调递增区间;(2)当时,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

先根据复数的除法求出,然后求出模长.【题目详解】因为,所以,,所以,故选B.【题目点拨】本题主要考查复数的运算和模长求解,侧重考查数学运算的核心素养.2、B【解题分析】

利用二项展开式的通项公式,令的幂指数等于,即可求出的系数.【题目详解】由题意,二项式展开式的通项公式为,令,解得,所以的系数为.故选:B【题目点拨】本题主要考查二项展开式的通项公式,考查学生计算能力,属于基础题.3、D【解题分析】分析:根据随机变量服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得.详解:由题意,

∵随机变量,,

∴故选:D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.4、D【解题分析】

根据函数周期的定义,得到函数是周期为3的周期函数,进而求得的值,进而得到,即可求解.【题目详解】根据题意,函数的定义域为,且,则函数是周期为3的周期函数,又由当时,,则,当时,,则,由函数是周期为3的周期函数,则则,所以,故选D.【题目点拨】本题主要考查了函数周期性的应用,以及函数值的计算,其中解答中根据函数周期性的定义,求得函数是周期为3的周期函数是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解题分析】

由渐近线方程得出的值,结合可求得【题目详解】∵双曲线的一条渐近线方程为,∴,∴,解得,即离心率为.故选:B.【题目点拨】本题考查双曲线的渐近线和离心率,解题时要注意,要与椭圆中的关系区别开来.6、C【解题分析】试题分析:以AB所在直线为x轴,AB中垂线为y轴,建立坐标系,设M(x,y),A(-a,0)、B(a,0);因为,所以y2=λ(x+a)(a-x),即λx2+y2=λa2,当λ=1时,轨迹是圆.当λ>0且λ≠1时,是椭圆的轨迹方程;当λ<0时,是双曲线的轨迹方程;当λ=0时,是直线的轨迹方程;综上,方程不表示抛物线的方程.故选C.考点:轨迹方程的求法,圆锥曲线方程。点评:中档题,判断轨迹是什么,一般有两种方法,一是定义法,二是求轨迹方程后加以判断。7、C【解题分析】试题分析:因为,所以因此考点:复数的模8、D【解题分析】

对,利用分析法证明;对,不式等两边同时乘以一个正数,不等式的方向不变,乘以0再根据不等式是否取等进行考虑;对,考虑的情况;对,利用同向不等式的可乘性.【题目详解】对,,因为大小无法确定,故不一定成立;对,当时,才能成立,故也不一定成立;对,当时不成立,故也不一定成立;对,,故一定成立.故选:D.【题目点拨】本题考查不等式性质的运用,考查不等式在特殊情况下能否成立的问题,考查思维的严谨性.9、C【解题分析】

根据三段论的要求:找出大前提,小前提,结论,再判断正误即可。【题目详解】大前提:正切函数是奇函数,正确;小前提:是正切函数,因为该函数为复合函数,故错误;结论:是奇函数,该函数为偶函数,故错误;结合三段论可得小前提不正确.故答案选C【题目点拨】本题考查简易逻辑,考查三段论,属于基础题。10、C【解题分析】

根据三角函数的周期公式,进行计算,即可求解.【题目详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【题目点拨】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.11、B【解题分析】

函数解析式提取5变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的性质可得结果.【题目详解】,其中,当,即时,取得最大值5,,则,故选B.【题目点拨】此题考查了两角和与差的正弦函数公式、辅助角公式的应用,以及正弦函数最值,熟练掌握公式是解本题的关键.12、B【解题分析】

根据含有一个量词的命题的否定,直接判断(1)错;根据正态分布的特征,直接判断(2)对;根据线性回归方程的特点,判断(3)正确;根据独立性检验的基本思想,可判断(4)错;根据方差的特征,可判断(5)正确.【题目详解】(1)命题“,”的否定形式是“,”,故(1)错;(2)因为,即服从正态分布,均值为,所以;故(2)正确;(3)因为回归直线必过样本中心,又已知回归直线的斜率的估计值是2,样本点的中心为,所以,即所求回归直线方程为:;故(3)正确;(4)对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;故(4)错;(5)若将一组样本数据中的每个数据都加上同一个常数后,方差不变.故(5)错.故选:B.【题目点拨】本题主要考查命题真假的判定,熟记相关知识点即可,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

设,,代入方程利用复数相等即可求解,求模即可.【题目详解】设,,则,整理得:解得,所以,故答案为1【题目点拨】本题主要考查了复数的概念,复数的模,复数方程,属于中档题.14、1【解题分析】

直接将代数式4x+y与相乘,利用基本不等式可求出的最小值.【题目详解】由基本不等式可得,当且仅当,等号成立,因此的最小值为1,故答案为:1.【题目点拨】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15、2-【解题分析】试题分析::z=2-i3=考点:复数代数形式的乘除运算.16、【解题分析】

根据条件可得,然后利用基本不等式求解即可.【题目详解】,,当且仅当,即时取等号,的最小值为.故答案为.【题目点拨】本题考查了基本不等式及其应用,关键掌握“1“的代换,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3).【解题分析】

消去参数得到普通方程,利用这个是可得到的直角坐标,直接利用转换关系对极坐标方程进行转换可得到曲线的极坐标方程;利用方程组和两点间的距离公式分别求出,相减求出结果.利用向量的数量积和三角函数关系式的恒等变换及正弦型函数的性质可求出结果.【题目详解】圆为参数,转换为直角坐标方程为:,,利用转换为极坐标方程为:,即.曲线的极坐标方程为,转化为,利用整理得:.直线l的极坐标方程为.转换为直角坐标方程为:,由于直线交曲线于两点,则:,解得:或,所以:,同理:直线交曲线于两点,则:,解得:或.所以:,所以:.由于,则,P为曲线上任意一点,,则:,所以,的范围是.【题目点拨】本题考查的知识要点:参数方程化为直角坐标方程,直角坐标方程与极坐标方程之间的转换,平面向量的数量积公式的应用,两点间距离公式的应用,三角函数关系式的恒等变变换及辅助角公式与角函数的有界性,意在考查综合应用所学知识解答问题的能力,属于中档题.18、(1)见解析(2)【解题分析】分析:(1)有转化为有两根:一根在与之间,另一根小于,利用一元二次方程的根分布可证;(2)先有,知两根同号,在分两根均为正和两根均为负两种情况的讨论,再利用两个之和与两根之积列不等式可求的取值范围.详解:(1)设,且,则由条件x1<2<x2<4得(2),又或综上:点睛:利用函数的零点求参数范围问题,通常有两种解法:一种是利用方程中根与系数的关系或利用函数思想结合图象求解;二种是构造两个函数分别作出图象,利用数形结合求解,此类题目也体现了函数与方程,数形结合的思想.19、(1)210x3(2)【解题分析】

(1)由已知得:,即,∴,解得(舍)或,由通项公式得:,令,得,∴含有的项是.(2)∵此展开式共有11项,∴二项式系数(即项的系数)最大项是第6项,∴20、(1)-16;(2).【解题分析】

(1)根据第5项的二项式系数最大可得的值.由二项式定理展开通项,即可求得含的项的系数;(2)由二项式定理展开通项,即可求得有理项.【题目详解】∵只有第5项的二项式系数最大,∴二项式的幂指数是偶数,那么其展开式的中间一项的二项式的系数最大,∴,解得.(1).其展开式的通项.令,得.∴含的项的系数为;(2)由,得,由,得(舍),由,得,由,得.∴展开式中的有理项为:.【题目点拨】本题考查了二项式定理展开的应用,有理项的求法,属于基础题.21、(1);(2)【解题分析】

(1)将代入可求得.根据通项公式与前项和的关系,可得数列为等比数列,由等比数列的通项公式即可求得数列的通项公式.(2)由(1)可得数列的通项公式,代入中,结合裂项法求和即可得前n项和.【题目详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论