乌海市重点中学2024届数学高二第二学期期末学业质量监测试题含解析_第1页
乌海市重点中学2024届数学高二第二学期期末学业质量监测试题含解析_第2页
乌海市重点中学2024届数学高二第二学期期末学业质量监测试题含解析_第3页
乌海市重点中学2024届数学高二第二学期期末学业质量监测试题含解析_第4页
乌海市重点中学2024届数学高二第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

乌海市重点中学2024届数学高二第二学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数(是虚数单位),则复数的共轭复数()A. B. C. D.2.已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A.2 B.3 C.4 D.53.曲线在点处的切线方程为A. B. C. D.4.在一次调查中,根据所得数据绘制成如图所示的等高条形图,则()A.两个分类变量关系较强B.两个分类变量关系较弱C.两个分类变量无关系^D.两个分类变量关系难以判断5.在的展开式中,系数为有理数的系数为A.336项 B.337项 C.338项 D.1009项6.已知命题,,那么命题为()A., B.,C., D.,7.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是()A.5,10,15,20,25B.2,4,8,16,32C.1,2,3,4,5D.7,17,27,37,478.某快递公司的四个快递点呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A.最少需要8次调整,相应的可行方案有1种B.最少需要8次调整,相应的可行方案有2种C.最少需要9次调整,相应的可行方案有1种D.最少需要9次调整,相应的可行方案有2种9.抛掷甲、乙两颗骰子,若事件A:“甲骰子的点数大于4”;事件B:“甲、乙两骰子的点数之和等于7”,则的值等于()A. B. C. D.10.已知满足约束条件,若的最大值为()A.6 B. C.5 D.11.某地区高考改革,实行“”模式,即“”指语文、数学、外语三门必考科目,“”指在化学、生物、政治、地理四门科目中必选两门,“”指在物理、历史两门科目中必选一门,则一名学生的不同选科组合有多少种?()A.种 B.种 C.种 D.种12.曲线的参数方程为,则曲线是()A.线段 B.双曲线的一支 C.圆弧 D.射线二、填空题:本题共4小题,每小题5分,共20分。13.有9本不相同的教科书排成一排放在书架上,其中数学书4本,外语书3本,物理书2本,如果同一学科的书要排在一起,那么有________种不同的排法(填写数值).14.如图,将标号为1,2,3,4,5的五块区域染上红、黄、绿三种颜色中的一种,使得相邻区域有公共边的颜色不同,则不同的染色方法有______种15.名同学排成一排照相,其中同学甲站在中间,则不同的排法种数为________(用数字作答).16.复数(是虚数单位)的虚部是_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若曲线与曲线在点处的切线方程相同,求实数的值;(2)若恒成立,求证:当时,.18.(12分)设函数.(1)解不等式;(2)若,使得,求实数m的取值范围.19.(12分)某小组10名学生参加的一次数学竞赛的成绩分别为:92、77、75、90、63、84、99、60、79、85,求总体平均数μ、中位数m、方差σ2和标准差σ;(列式并计算,结果精确到0.1)20.(12分)在四棱锥中,侧棱底面,底面是直角梯形,,,,,是棱上的一点(不与、点重合).(1)若平面,求的值;(2)求二面角的余弦值.21.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)若直线与曲线交于两点,,求.22.(10分)已知集合U=R,集合A={x|(x-2)(x-3)<0},函数y=lg的定义域为集合B.(1)若a=,求集合A∩(∁UB);(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:利用复数代数形式的乘除运算化简求得z,再由共轭复数的概念得答案.详解:,.故选:B.点睛:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.2、B【解题分析】

由g(x)=xf(x)﹣1=0得f(x),根据条件作出函数f(x)与h(x)的图象,研究两个函数的交点个数即可得到结论.【题目详解】由g(x)=xf(x)﹣1=0得xf(x)=1,当x=0时,方程xf(x)=1不成立,即x≠0,则等价为f(x)=,当2<x≤4时,0<x﹣2≤2,此时f(x)=f(x﹣2)=(1﹣|x﹣2﹣1|)=﹣|x﹣3|,当4<x≤6时,2<x﹣2≤4,此时f(x)=f(x﹣2)=[﹣|x﹣2﹣3|]=﹣|x﹣5|,作出f(x)的图象如图,则f(1)=1,f(3)=f(1)=,f(5)=f(3)=,设h(x)=,则h(1)=1,h(3)=,h(5)=>f(5),作出h(x)的图象,由图象知两个函数图象有3个交点,即函数g(x)的零点个数为3个,故选:B.【题目点拨】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.3、C【解题分析】

根据题意可知,结合导数的几何意义,先对函数进行求导,求出点处的切线斜率,再根据点斜式即可求出切线方程。【题目详解】由题意知,因此,曲线在点处的切线方程为,故答案选C。【题目点拨】本题主要考查了利用导数的几何意义求切线方程,一般利用点斜式构造直线解析式。4、A【解题分析】分析:利用等高条形图中两个分类变量所占比重进行推理即可.详解:从等高条形图中可以看出2,在中的比重明显大于中的比重,所以两个分类变量的关系较强.故选A点睛:等高条形图,可以粗略的判断两个分类变量是否有关系,但是这种判断无法精确的给出所得结论的可靠程度,考查识图用图的能力.5、A【解题分析】

根据题意,求出的展开式的通项,即可得项的系数,进而分析可知若系数为有理数,必有,、2、、,即可得出答案.【题目详解】根据题意,的展开式的通项为;其系数为若系数为有理数,必有,、、共有336项,故选A.【题目点拨】本题考查二项式定理的应用,关键是掌握二项式定理的形式,属于基础题.6、C【解题分析】特称命题的否定为全称命题,则为,,故选C.7、D【解题分析】此题考查系统抽样系统抽样的间隔为:k=50答案D点评:掌握系统抽样的过程8、D【解题分析】

先阅读题意,再结合简单的合情推理即可得解.【题目详解】(1)A→D调5辆,D→C调1辆,B→C调3辆,共调整:5+1+3=9次,(2)A→D调4辆,A→B调1辆,B→C调4辆,共调整:4+1+4=9次,故选:D【题目点拨】本题考查了阅读能力及简单的合情推理,属中档题.9、C【解题分析】本小题属于条件概率所以事件B包含两类:甲5乙2;甲6乙1;所以所求事件的概率为10、A【解题分析】分析:首先绘制不等式组表示的平面区域,然后结合目标函数的几何意义求解最值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A坐标为:,据此可知目标函数的最大值为:.本题选择A选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.11、B【解题分析】

根据题意,分步进行分析该学生在“语文、数学、外语三门”、“化学、生物、政治、地理四门”、“物理、历史两门”中的选法数目,由分步计数原理计算可得答案.【题目详解】根据题意,分3步进行分析:①语文、数学、外语三门必考科目,有1种选法;②在化学、生物、政治、地理四门科目中必选两门,有种选法;③在物理、历史两门科目中必选一门,有种选法;则这名学生的不同选科组合有种.故选:B.【题目点拨】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.12、A【解题分析】由代入消去参数t得又所以表示线段。故选A二、填空题:本题共4小题,每小题5分,共20分。13、1728【解题分析】

根据题意,将同学科的书捆绑,由排列的概念,即可得出结果.【题目详解】因为一共有数学书4本,外语书3本,物理书2本,同一学科的书要排在一起,则有种不同的排法.故答案为:【题目点拨】本题主要考查排列的应用,利用捆绑法即可求解,属于常考题型.14、30【解题分析】

由题意按照分类分步计数原理,可逐个安排,注意相邻不同即可.【题目详解】对于1,有三种颜色可以安排;若2和3颜色相同,有两种安排方法,4有两种安排,5有一种安排,此时共有;若2和3颜色不同,则2有两种,3有一种.当5和2相同时,4有两种;当5和2不同,则4有一种,此时共有,综上可知,共有种染色方法.故答案为:.【题目点拨】本题考查了排列组合问题的综合应用,分类分步计数原理的应用,染色问题的应用,属于中档题.15、【解题分析】

根据题意,不用管甲,其余人全排列即可,根据排列数的定义可得出结果.【题目详解】根据题意,甲在中间位置固定了,不用管,其它名同学全排列即可,所以排法种数共有种.故答案为:.【题目点拨】本题是排列问题,有限制条件的要先安排,最后安排没有条件要求的即可,属于一般基础题.16、【解题分析】

根据复数的结果,直接判断出其虚部是多少.【题目详解】因为,所以复数的虚部为.故答案为:.【题目点拨】本题考查复数的虚部的辨别,难度容易.已知复数,则为复数的实部,为复数的虚部.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)答案见解析。【解题分析】试题分析:(1)由题意得到关于实数a,b的方程组,求解方程组可得,.(2)由题意结合恒成立的结论分类讨论即可证得题中的结论.试题解析:(1)由,.得,解得,.(2)证明:设,则,①当时,,函数在上单调递增,不满足恒成立.②当时,令,由,得,或(舍去),设,知函数在上单调递减,在上单调递增,故,即,得.又由,得,所以,令,.当时,,函数单调慈善当时,,函数单调递增;所以,即,故当时,得.18、(1);(2).【解题分析】

1把用分段函数来表示,令,求得x的值,可得不等式的解集2由1可得的最小值为,再根据,求得m的范围.【题目详解】1函数,令,求得,或,故不等式的解集为,或;2若存在,使得,即有解,由(1)可得的最小值为,故,解得.【题目点拨】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.19、,,,【解题分析】

根据平均数、方差、标准差的计算公式求得结果,根据中位数的定义可排列顺序后求得.【题目详解】平均数名学生按成绩自低到高排列为:则中位数方差标准差【题目点拨】本题考查已知数据求解平均数、中位数、方差和标准差的问题,考查运算求解能力,属于基础题.20、(1)(2)【解题分析】

(1)由平面可得,从而得到.(2)以为坐标原点,的方向为轴,轴,轴正方向建立空间直角坐标系,求出平面的一个法向量和平面的一个法向量后可得二面角的余弦值.【题目详解】(1)证明:因为平面,平面,平面平面,所以,所以,因为,所以.所以.(2)解:以为坐标原点,的方向为轴,轴,轴正方向建立如图所示的空间直角坐标系,则点.则.设平面的一个法向量为,则,即,得.令,得;易知平面的一个法向量为,设二面角的大小为,则.故二面角的余弦值为.【题目点拨】线线平行的证明可利用线面平行或面面平行来证明,空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.21、(1)x+y-1=0,;(2).【解题分析】

(1)由直线的参数方程,消去参数,即可得到普通方程;根据极坐标与直角坐标的转化公式,可将化为直角坐标方程;(2)将直线的参数方程代入曲线的直角坐标方程,再设两点对应的参数为,根据韦达定理,即可求出结果.【题目详解】(1)直线的普通方程为由,得,则,故曲线的直角坐标方程为.(2)将,代人,得,设两点对应的参数为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论