2024届贵州省黔西南布依族苗族自治州兴义市第八中学数学高二下期末考试试题含解析_第1页
2024届贵州省黔西南布依族苗族自治州兴义市第八中学数学高二下期末考试试题含解析_第2页
2024届贵州省黔西南布依族苗族自治州兴义市第八中学数学高二下期末考试试题含解析_第3页
2024届贵州省黔西南布依族苗族自治州兴义市第八中学数学高二下期末考试试题含解析_第4页
2024届贵州省黔西南布依族苗族自治州兴义市第八中学数学高二下期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省黔西南布依族苗族自治州兴义市第八中学数学高二下期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则下列结论中不恒成立的是()A. B. C. D.2.已知函数,其中为自然对数的底数,则对任意,下列不等式一定成立的是()A. B.C. D.3.已知双曲线过,两点,点为该双曲线上除点,外的任意一点,直线,斜率之积为,则双曲线的方程是()A. B. C. D.4.已知函数的图象如图所示(其中是函数的导函数),下面四个图象中,的图象大致是()A. B. C. D.5.函数的极小值点是()A.1 B.(1,﹣) C. D.(﹣3,8)6.已知实数满足,则下列说法错误的是()A. B.C. D.7.已知命题:“,有成立”,则命题为()A.,有成立 B.,有成立C.,有成立 D.,有成立8.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85 B.56C.49 D.289.已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上 B.在轴上C.当时在轴上 D.当时在轴上10.函数有()A.最大值为1 B.最小值为1C.最大值为 D.最小值为11.若是的必要不充分条件,则实数的取值范围是()A.[-3,3] B.C. D.[-1,1]12.两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是()A.模型1的相关指数R2为0.98 B.模型2的相关指数R2为0.80C.模型3的相关指数R2为0.50 D.模型4的相关指数R2为0.25二、填空题:本题共4小题,每小题5分,共20分。13.已知直线的参数方程为:(为参数),椭圆的参数方程为:(为参数),若它们总有公共点,则取值范围是___________.14.关于的不等式的解集是,求实数的取值范围是_______.15.已知是等腰直角三角形,斜边,是平面外的一点,且满足,,则三棱锥外接球的表面积为________.16.命题:“,使得”的否定是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点P(2,2),圆,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求点M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.18.(12分)选修4-5:不等式选讲设函数.(Ⅰ)解不等式>2;(Ⅱ)求函数的最小值.19.(12分)已知函数,曲线在处的切线与轴平行.(1)求实数的值;(2)设,求在区间上的最大值和最小值.20.(12分)数列满足.(1)计算,并由此猜想通项公式;(2)用数学归纳法证明(1)中的猜想.21.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式对任意恒成立,求实数的取值范围.22.(10分)在四棱锥中,侧棱底面,底面是直角梯形,,,,,是棱上的一点(不与、点重合).(1)若平面,求的值;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析两数可以是满足,任意数,利用特殊值法即可得到正确选项.详解:若,不妨设a代入各个选项,错误的是A、B,

当时,C错.

故选D.点睛:利用特殊值法验证一些式子错误是有效的方法,属于基础题.2、A【解题分析】

,可得在上是偶函数.函数,利用导数研究函数的单调性即可得出结果.【题目详解】解:,在上是偶函数.函数,,令,则,函数在上单调递增,,函数在上单调递增.,,.故选:A.【题目点拨】本题考查利用导数研究函数的单调性、函数的奇偶性,不等式的性质,考查了推理能力与计算能力,属于中档题.3、D【解题分析】分析:根据两条直线斜率之积为定值,设出动点P的坐标,即可确定解析式。详解:因为直线,斜率之积为,即,设P()则,化简得所以选D点睛:本题考查了圆锥曲线的简单应用,根据斜率乘积为定值确定动点的轨迹方程,属于简单题。4、C【解题分析】

根据图象:分,,,,四种情况讨论的单调性.【题目详解】根据图象:当,所以递增,当,所以递减,当,所以递减,当,所以递增,故选:C【题目点拨】本题主要考查导数与函数的图象间的关系,还考查了数形结合的思想和理解辨析的能力,属于常考题.5、A【解题分析】

求得原函数的导数,令导数等于零,解出的值,并根据单调区间判断出函数在何处取得极小值,并求得极值,由此得出正确选项.【题目详解】,由得函数在上为增函数,上为减函数,上为增函数,故在处有极小值,极小值点为1.选A【题目点拨】本小题主要考查利用导数求函数的极值点,属于基础题.6、A【解题分析】

设,证明单调递增,得到,构造函数根据单调性到正确,取,,则不成立,错误,得到答案.【题目详解】设,则恒成立,故单调递增,,即,即,.取,,则不成立,错误;设,则恒成立,单调递增,故,就,正确;同理可得:正确.故选:.【题目点拨】本题考查了根据函数的单调性比较式子大小,意在考查学生对于函数性质的综合应用.7、B【解题分析】

特称命题的否定是全称命题。【题目详解】特称命题的否定是全称命题,所以,有成立的否定是,有成立,故选B.【题目点拨】本题考查特称命题的否定命题,属于基础题。8、C【解题分析】试题分析:根据题意:,故选C.考点:排列组合.9、B【解题分析】

设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置.【题目详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选:B.【题目点拨】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力.10、A【解题分析】

对函数进行求导,判断出函数的单调性,进而判断出函数的最值情况.【题目详解】解:,当时,,当时,,在上单调递增,在上单调递减,有最大值为,故选A.【题目点拨】本题考查了利用导数研究函数最值问题,对函数的导函数的正负性的判断是解题的关键.11、D【解题分析】

根据充分、必要条件的定义,可知当时,恒成立,解一元二次不等式即可。【题目详解】依题意可知,当时,恒成立,所以,解得,故选D。【题目点拨】本题主要考查充分、必要条件定义的应用以及恒成立问题的解法。12、A【解题分析】解:因为回归模型中拟合效果的好不好,就看相关指数是否是越接近于1,月接近于1,则效果越好.选A二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

把参数方程化为普通方程,若直线与椭圆有公共点,对判别式进行计算即可.【题目详解】直线l的参数方程为(t为参数),消去t化为普通方程为ax﹣y﹣1=0,且,椭圆C的参数方程为:(θ为参数),消去参数化为.联立直线与椭圆,消y整理得,若它们总有公共点,则,解得且,故答案为.【题目点拨】本题考查参数方程与普通方程之间的互化,考查直线与椭圆的位置关系,考查计算能力,属于基础题.14、【解题分析】

利用判别式△<0求出实数k的取值范围.【题目详解】关于x的不等式的解集为R,∴△=k2-4×9<0,解得∴实数k的取值范围为.【题目点拨】本题考查了一元二次不等式恒成立问题,是基础题.15、【解题分析】

在平面的投影为的外心,即中点,设球半径为,则,解得答案.【题目详解】,故在平面的投影为的外心,即中点,故球心在直线上,,,设球半径为,则,解得,故.故答案为:.【题目点拨】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.16、,【解题分析】

直接利用特称命题的否定解答即可.【题目详解】因为特称命题的否定是全称命题,所以命题:“,使得”的否定是:,.故答案为:,.【题目点拨】本题主要考查特称命题的否定,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)直线的方程为,的面积为.【解题分析】

求得圆的圆心和半径.(1)当三点均不重合时,根据圆的几何性质可知,是定点,所以的轨迹是以为直径的圆(除两点),根据圆的圆心和半径求得的轨迹方程.当三点有重合的情形时,的坐标满足上述求得的的轨迹方程.综上可得的轨迹方程.(2)根据圆的几何性质(垂径定理),求得直线的斜率,进而求得直线的方程.根据等腰三角形的几何性质求得的面积.【题目详解】圆,故圆心为,半径为.(1)当C,M,P三点均不重合时,∠CMP=90°,所以点M的轨迹是以线段PC为直径的圆(除去点P,C),线段中点为,,故的轨迹方程为(x-1)2+(y-3)2=2(x≠2,且y≠2或x≠0,且y≠4).当C,M,P三点中有重合的情形时,易求得点M的坐标为(2,2)或(0,4).综上可知,点M的轨迹是一个圆,轨迹方程为(x-1)2+(y-3)2=2.(2)由(1)可知点M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上.又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以的斜率为,故的方程为,即.又易得|OM|=|OP|=,点O到的距离为,,所以△POM的面积为.【题目点拨】本小题主要考查动点轨迹方程的求法,考查圆的几何性质,考查等腰三角形面积的计算,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题.18、(Ⅰ)的解集为.(Ⅱ)最小值【解题分析】

解:(Ⅰ)令,则作出函数的图像,它与直线的交点为和.所以的解集为(Ⅱ)由函数的图像可知,当时,取得最小值.19、(1);(2)最大值为,最小值为.【解题分析】

(1)求出导数,由可求出实数的值;(2)利用函数的导数,判断函数的单调性,求出函数的极值以及端点的函数值,比较大小后可得出该函数的最值.【题目详解】(1),,由于曲线在处的切线与轴平行,则,解得;(2)由(1)可得,该函数的定义域为,,令,可得.当时,,,此时;当时,,,此时.所以,函数在上单调递增,在上单调递减.,,当时,.,,令,则,所以,函数在时单调递增,即,则,因此,函数在区间上的最大值为,最小值为.【题目点拨】本题考查函数的导数的应用,利用切线斜率求参数以及函数的最值的求法,考查转化思想的应用,是难题.20、(1);(2)见解析【解题分析】分析:(1)根据题设条件,可求a1,a2,a3,a4的值,猜想{an}的通项公式.(2)利用数学归纳法的证明步骤对这个猜想加以证明.详解:(1)根据数列满足,当时,,即;当时,,即;同理,由此猜想;(2)当时,,结论成立;假设(为大于等于1的正整数)时,结论成立,即,那么当(大于等于1的正整数)时,∴,∴,即时,结论成立,则.点睛:此题主要考查归纳法的证明,归纳法一般三个步骤:(1)验证n=1成立;(2)假设n=k成立;(3)利用已知条件证明n=k+1也成立,从而求证,这是数列的通项一种常用求解的方法21、(1);(2)【解题分析】分析:(1)利用零点分类讨论法解不等式.(2)先利用分段函数求得,再解不等式得到实数的取值范围.详解:(1)当时,由得,故有或或∴或或,∴或,∴的解集为或.(2)当时∴由得∴∴的取值范围为.点睛:(1)本题主要考查绝对值不等式的解法,考查分段函数的最值的求法,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分类讨论的思想方法.(2)解题的关键是求的最小值,这里要利用分段函数的图像求解.22、(1)(2)【解题分析】

(1)由平面可得,从而得到.(2)以为坐标原点,的方向为轴,轴,轴正方向建

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论